Method and system for aircraft flow management by...

Data processing: vehicles – navigation – and relative location – Vehicle control – guidance – operation – or indication – Traffic analysis or control of aircraft

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C701S121000, C701S301000, C342S036000

Reexamination Certificate

active

06463383

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to data processing, vehicle navigation, flow management and time sequencing systems. More particularly, this invention relates to methods and systems for airlines/aviation/airport authorities to better manage the arrival/departure flow of a plurality of aircraft into and out of a system resource, like an airport, or a set of system resources, so as to yield increased aviation safety and airline/airport/airspace operating efficiency.
2. Description of the Related Art
The need for and advantages of management operation systems that optimize complex, multi-faceted processes have long been recognized. Thus, many complex methods and optimization systems have been developed. However, as applied to management of the aviation industry, such methods often have been fragmentary or overly restrictive and have not addressed the overall optimization of key aspects of an aviation authority's regulatory function, such as the flow of a plurality of arrival/departure aircraft to/from a system resource or set of system resources.
The patent literature for the aviation industry's operating systems and methods includes: U.S. Pat. No. 5,200,901—“Direct Entry Air Traffic Control System for Accident Analysis and Training,” U.S. Pat. No. 4,926,343—“Transit Schedule Generating Method and System,” U.S. Pat. No. 4,196,474—“Information Display Method and Apparatus for Air Traffic Control,” United Kingdom Patent No. 2,327,517A—“Runway Reservation System,” and PCT International Publication No. WO 00/62234—“Air Traffic Management System.”
Aviation regulatory authorities (e.g., various Civil Aviation Authorities (CAA) throughout the world, including the Federal Aviation Administration (FAA) within the U.S.) are responsible for matters such as the separation of in-flight aircraft. In an attempt to optimize their regulation of this activity, most CAAs have chosen to segment this activity into various phases (e.g., taxi separation, takeoff runway assignment, enroute separation, oceanic separation, arrival/departure sequencing and arrival/departure runway assignment) which are often sought to be independently optimized.
These optimizations are usually attempted by various, independent ATC controllers. Unfortunately, this situation often appears to result in optimization actions by individual parts of the airspace system (e.g., individual controllers or pilots) which have the effect of reducing the aviation industry's overall safety and efficiency.
There appears to have been few successful attempts by the various airlines/CAAs/airports to make real-time, trade-offs between their different segments and the competing goals of these segments as it relates to optimizing the safe and efficient movement of aircraft. For example, in the sequencing of the arrival/departure flow of aircraft to an airport, it often happens that some sequencing actions are taken too early (e.g., ground holds on aircraft before enough data is analyzed to determine the validity of an apparent constraint in the arrival/departure flow; see PCT International Publication No. WO 00/62234—“Air Traffic Management System”) or too late (e.g., when an aircraft is within 50 to 100 miles from an airport) to resolve a problem.
To better understand these aviation processes,
FIG. 1
has been provided to indicate the various segments in a typical aircraft flight process. It begins with the filing of a flight plan by the airline/pilot with a CAA. Next the pilot arrives at the airport, starts the engine, taxis, takes off, flies the flight plan (i.e., route of flight), lands and taxis to parking. At each stage during the movement of the aircraft on an IFR flight plan, the CAA's Air Traffic Control (ATC) system must approve any change to the trajectory of the aircraft. Further, anytime an aircraft on an IFR flight plan is moving, an ATC controller is responsible for ensuring that an adequate separation from other aircraft is maintained. During the last part of a flight, typical initial arrival sequencing (accomplished on a first come, first serve basis, e.g., the aircraft closest to the arrival fix is first, next closest is second and so on) is accomplished by the enroute ATC center near the arrival/departure airport (within approximately 100 miles of the airport), refined by the arrival/departure ATC facility (within approximately 25 miles of the arrival airport), and then approved for landing by the arrival ATC tower (within approximately 5 miles of the arrival airport).
For example, current CAA practices for managing arrivals at arrival airports involve sequencing aircraft arrivals by linearizing an airport's traffic flow according to very structured, three-dimensional, aircraft arrival paths, 100 to 200 miles from the airport or by holding incoming aircraft at their departure airports. For a large hub airport (e.g., Chicago, Dallas, Atlanta), these paths involve specific geographic points that are separated by approximately ninety degrees; see FIG.
2
. Further, if the traffic into an arrival fix to the airport is relatively continuous over a period of time, the linearization of the aircraft flow is effectively completed hundreds of miles from the arrival fix. This can significantly restrict all the aircraft's arrival speeds, since all in the line of arriving aircraft are limited to that of the slowest aircraft in the line ahead.
Unfortunately, if nature adds a twenty-mile line of thunderstorms over one of the structured arrival fixes—the flow of traffic stops. Can the aircraft easily fly around the weather? Yes. Will the structure in the current ATC system allow it? No. To fly around the weather, an arriving aircraft could potentially conflict with the departing aircraft which the system dictates must climb out from the airport between the arrival fixes.
The temporal variations in the flow of aircraft into an airport can be quite significant.
FIG. 3
shows for the Dallas-Ft. Worth Airport the times of arrival at the airport's runways for the aircraft arriving during the thirty minute time period from 22:01 to 22:30. It can be seen that the numbers of aircraft arriving during the consecutive, five-minute intervals during this period were 12, 13, 6, 8, 6 and 5, respectively. While some of these variations are due to the aircraft's planed scheduling differences, much of it is also seen to be due to the many decisions, independent in nature, that impact whether a scheduled flight will arrive at its fix point at its scheduled time. These decisions may include whether a customer service agent shuts a departing aircraft's door at the scheduled time or maybe waits for some late, connecting passengers, or the personal preferences that the pilots exhibit in setting their flight speeds for the various legs of their flights. These types of independent decisions lead to a random distribution of the arrival aircraft, regardless of the schedule, and obviously effect the outcome of the arrival flow. This type of random arrival pattern leads to random spacing of the arrival aircraft as they approach a runway, which leads to wasted capacity.
Much of the current thinking concerning the airline/ATC delay problem is that it stems from the over scheduling by the airlines of too many aircraft into too few runways. While this may be true in part, it is also the case that the many apparently independent decisions that are made by an airline's staff and various ATC controllers may significantly contribute to airline/ATC delay/congestion problems.
These delays are especially problematic since they are seen to be cumulative.
FIG. 4
shows, for all airlines and a number of U.S. airports, the percentage of aircraft arriving on time during various one hour periods throughout a typical day. This on time arrival performance is seen to deteriorate throughout the day.
Where there are problems with over scheduling, the optimal, real-time sequencing of the various sizes of incoming aircraft could conceivably offer a possible mechanism for remedyi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for aircraft flow management by... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for aircraft flow management by..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for aircraft flow management by... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2943504

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.