Communications: directive radio wave systems and devices (e.g. – Directive – Including a satellite
Reexamination Certificate
1999-03-08
2001-03-20
Blum, Theodore M. (Department: 3662)
Communications: directive radio wave systems and devices (e.g.,
Directive
Including a satellite
C342S357490, C342S357490, C342S457000, C701S213000
Reexamination Certificate
active
06204808
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to Global Positioning System (GPS) receivers and, more particularly, to a method to deliver information to GPS receivers that are integrated with cellular phones or other devices that communicate via a cellular or PCS network.
BACKGROUND OF THE INVENTION
Determining the geographical position of a mobile station within a cellular network or other Public Land Mobile Network (PLMN) has recently become important for a wide range of applications. For example, positioning services may be desired by transport and taxi companies to determine the location of their vehicles and to improve the efficiency of dispatch procedures. In addition, for emergency calls, e.g., 911 calls, knowing the exact location of a mobile terminal may be vital in ensuring a positive outcome in emergency situations.
Furthermore, positioning services can be used to determine the location of a stolen car, to identify home zone calls which may be charged at a lower rate, to detect hot spots in a micro cell, or to provide premium subscriber services, e.g., the Where Am I service. The Where Am I service facilitates the determination of, for example, the location of the nearest gas station, restaurant, or hospital to a mobile station.
One technique for determining the geographic position of a mobile station is to use the satellite-based Global Positioning System (GPS). GPS is a satellite navigation system that provides specially coded satellite signals that can be processed in a GPS receiver to yield the position, velocity and time of a receiving unit. Four or more GPS satellite signals are needed to compute the three-dimensional locational coordinates and the time offset of a receiver clock relative to a fixed coordinate system.
The GPS system comprises twenty-four satellites (not counting spares) that orbit the Earth in approximately twelve hours. The orbital altitude of the GPS satellites (20,200 Km) is such that the satellites repeat the same ground track and configuration over any point approximately once every twenty-four hours. There are six orbital planes each nominally with at least four satellites in each, that are equally spaced (i.e., 60° apart) and inclined at about 55° relative to the equatorial plane of the Earth. This constellation arrangement ensures that between four and twelve satellites are visible to users from any point on Earth.
The satellites of the GPS system offer two levels of precision in determining the position, velocity and time coordinates at a GPS receiver. The bulk of the civilian users of the GPS system use the Standard Positioning Service (SPS) which has a 2-&sgr; accuracy of 100 meters horizontally, ±156 meters vertically and ±340 ns time. The Precise Positioning Service (PPS) is available only to authorized users having cryptographic equipment and keys and specially equipped receivers.
Each of the GPS satellites transmit two microwave carrier signals. The L
1
frequency (centered at 1575.42 MHZ) carries the navigation message as well as the SPS and PPS code signals. The L
2
frequency (centered at 1227.60 MHZ) also carries the PPS code and is used to measure the ionospheric delay by receivers compatible with the PPS system.
The L
1
and L
2
microwave carrier signals are modulated by three binary codes: a 1.023 MHZ Coarse Acquisition (C/A) code, a 10.23 MHZ Precise Code (P-Code) and a 50 Hz Navigational System Data Code (NAV Code). The C/A code is a pseudorandom number (PRN) code that uniquely characterizes a GPS satellite. All of the GPS satellites transmit their binary codes over the same L
1
and L
2
carriers. The multiple simultaneously-received signals are recovered by a Code Division Multiple Access (CDMA) correlator. The correlator in a civilian GPS receiver first recovers the C/A Code as modulated by the NAV Code. A Phase Locked Loop (PLL) circuit then separates out the C/A Code from the NAV Code. It should be emphasized that a GPS receiver first needs to determine its approximate location in order to determine which of the GPS satellites are within range. Conversely, a GPS receiver that knows its approximate position can tune faster into the signals transmitted by the appropriate GPS satellites.
The startup of a GPS receiver typically requires the acquisition of a set of navigational parameters from the navigational data signals of four or more GPS satellites. This process of initializing a GPS receiver may often take several minutes.
The duration of the GPS positioning process is directly dependent upon how much information a GPS receiver has. Most GPS receivers are programmed with almanac data, which coarsely describes the expected satellite positions for up to one year ahead. However, if the GPS receiver does not have some knowledge of its own approximate location, then the GPS receiver cannot correlate signals from the visible satellites fast enough, and therefore, cannot calculate its position quickly. Furthermore, it should be noted that a higher signal strength is needed for capturing the C/A Code and the NAV Code at start-up than is needed for continued monitoring of an already-acquired signal. It should also be noted that the process of monitoring the GPS signal is significantly affected by environmental factors. Thus, a GPS signal which may be easily acquired in the open becomes progressively harder to acquire when a receiver is under foliage, in a vehicle, or worst of all, in a building.
Recent governmental mandates, e.g., the response time requirements of the FCC Phase II E-911 service, make it imperative that the position of a mobile handset be determined accurately and in an expedited manner. Thus, in order to implement a GPS receiver effectively within a mobile terminal while also meeting the demands for fast and accurate positioning, it has become necessary to be able to quickly provide mobile terminals with accurate assistance data, e.g., local time and position estimates, satellite ephemeris and clock information (which may vary with the location of the mobile station). The use of such assistance data can permit a GPS receiver that is integrated with or connected to a mobile station to expedite the completion of its start-up procedures. It is therefore desirable to be able to send the necessary assistance GPS information over an existing wireless network to a GPS receiver that is integrated with or connected to a mobile terminal.
Taylor et al. U.S. Pat. No. 4,445,118 discusses the concept of aiding or assisting GPS receivers. The method described uses a single transmitter, such as a geosynchronous satellite, to provide a single assistance message for a wide geographical area. The assistance data includes a list of GPS satellites in view, the respective satellite positions, and predicted Doppler shifts on the satellite signals. This structure of this message permits the position computation function (PCF) to be done in the user receiver.
Krasner U.S. Pat. No. 5,663,734 describes another GPS receiver approach. The patent is mainly related to the receiver architecture, but discusses how the receiver performance can be improved by assistance. The patent mentions “data representative of ephemeris” and expected Doppler shifts as possible contents of the assistance message.
Lau U.S. Pat. No. 5,418,538 describes a system and method for aiding a remote GPS/GLONASS receiver by broadcasting “differential” information from a like receiver in a “reference station”. The reference station broadcasts a visible satellite list and also the associated ephemerides, in one embodiment. The advantage to the remote receiver is three-fold: reduced memory requirements, lower-cost frequency reference, and faster acquisition. The discussion describes the benefit of being able to estimate and remove the Doppler due to the receiver clock inaccuracy after acquiring the first satellite.
Eshenbach U.S. Pat. No. 5,663,735 describes a method whereby a GPS receiver derives an accurate absolute time reference from a radio signal. Optionally, the receiver also derives from the radio signal a frequency reference that is more accur
Bloebaum Leland Scott
Homiller Daniel P.
Koorapaty Havish
Zadeh Bagher R.
Blum Theodore M.
Ericsson Inc.
Wood Phillips VanSanten Clark & Mortimer
LandOfFree
Method and system for aiding GPS receivers via a cellular or... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and system for aiding GPS receivers via a cellular or..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for aiding GPS receivers via a cellular or... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2485363