Method and system for accurate self-servowriting with...

Dynamic magnetic information storage or retrieval – Automatic control of a recorder mechanism – Controlling the head

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06469859

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates generally to data storage devices wherein data access is achieved by positioning a transducer relative to a storage medium, positioning being controlled by a servo system in response to positional information. More particularly it relates to an improved disk drive apparatus and method for writing positional information to the medium.
Increased levels of storage capacity in storage devices such as hard disk drives (optical or magnetic, for example) and removable storage media (removable disk or removable tape drives, for example) are a direct result of the higher track densities possible with voice-coil and other types of servo positioners as well as the ability to read and write narrower tracks by using, for example, magnetoresistive (MR) head technology. Head positioning is accurately controlled using positional information stored on the disk itself, as in dedicated and embedded servo architectures.
Conventional servo-patterns, e.g. in an “embedded servo” disk drive, typically comprise short bursts of a constant frequency signal, very precisely offset to either side of a data track's center line. The bursts precede data regions of the track and are used to align a head with respect to the track center. Staying on track center is required during both reading and writing for accurate data storage and retrieval. Since there can be, for example, sixty or more data regions per track, that same number of servo data areas are preferably distributed around a track to provide means for a head to follow the track's center line as the disk rotates, even when the track is out of round, e.g., as a result of spindle wobble, disk slip and/or thermal expansion. As technology advances to provide smaller disk drives and increased track densities, the accurate placement of servo data must also increase proportionately.
Servo-data are conventionally written by costly dedicated servowriting equipment external to the disk drive equipped with large granite blocks for stably supporting the drive and quieting external vibrational effects. An auxiliary clock head is inserted onto the surface of the recording disk to write a reference timing pattern, and an external head/arm assembly is used to precisely position the transducer. The positioner includes a very accurate lead screw and a laser displacement measurement device for positional feedback. Servotracks are written on the media of a head disk assembly (HDA) with a specialized servowriter instrument. Laser positioning feedback is used in such instruments to read the actual physical position of a recording head used to write the servotracks.
A disadvantage of servo writers such as those described is that they require a clean room environment, as the disk and heads will be exposed to the environment to allow the access of the external head and actuator. Additionally, it is becoming more and more difficult for such servowriters to invade the internal environment of a HDA for servowriting because the HDAs themselves are exceedingly small and depend on their covers and castings to be in place for proper operation. Some HDAs, for instance, are the size and thickness of a plastic credit card.
In view of these challenges, a disk drive able to perform self-servo writing would be tremendously advantageous. However, this approach presents a new set of challenges. Specifically, self-servowriting systems are more prone to mechanical disturbances. Moreover, because of the interdependency of propagation tracks in self-servowriting, track shape errors introduced by mechanical disturbances and other factors may be amplified from one track to the next when writing the propagation tracks. Thus a self-servowriting system must be able to write servopatterns with a high degree of accuracy to meet the stringent requirements of high density disk drives.
Servopatterns consist of bursts of transitions located at intervals around the disk surface. In self-propagation, the radial position signal that is used to servo-control the actuator is derived from measurements of the readback amplitude of patterns that were written during a previous step of the servowrite process. That is, the burst edges of a written track comprise a set of points defining a track shape that the servo controller will attempt to follow when writing the next track. Thus, errors in the transducer position during burst writing appear as distortions away from a desired circular track shape. The servo controller causes the actuator to follow the resulting non-circular trajectory in a next burst writing step, so that the new bursts are written at locations reflecting (via the closed-loop response of the servo loop) the errors present in the preceding step, as well as in the present step. Consequently, each step in the process carries a “memory” of all preceding track shape errors. This “memory” depends on the particular closed-loop response of the servo loop.
Effects that result in track shape errors include, for example, random mechanical motion and modulation in the width of the written track that results from variations in the properties of the recording medium or in the flying height of the transducer Uncontrolled growth of such errors can lead to excessive track non-circularity. In some cases, error compounding may even lead to exponential growth of errors, exceeding all error margins and causing the self-propagation process to fail. Consequently, self-servowriting systems must provide a means for accurately writing servopatterns while controlling the propagation of track shape errors.
One self-servo writing method is disclosed in U.S. Pat. No. 4,414,589 to Oliver et al., which teaches optimization of track spacing. Head positioning is achieved in the following manner. First, one of the moving read/write heads is positioned at a first stop limit in the range of movement of the positioning means. The head is used to write a first reference track. A predetermined percentage of amplitude reduction, X%, is selected that empirically corresponds to the desired average track density. The moving head reads the first reference track and is displaced away from the first stop limit until the amplitude of the signal from the first reference track is reduced to X% of its original amplitude. A second reference track is then written by the head at the new location, read, and the head is again displaced in the same direction until the amplitude of signal from the second reference track is reduced to X% of its original value. The process is continued until the disc is filled with reference tracks. The average track density is checked to insure that it is within a predetermined acceptable range of the desired average track density. If the average track density is too high or too low, the disk is erased, the X% value is appropriately lowered or increased, and the process is repeated. If the average track density is within the predetermined acceptable range, the desired reduction rate X% for a given average track density has been determined and the servo writer may then proceed to the servo writing steps. Thus while Oliver provides a means for positioning the heads, it fails to teach how to limit the growth of errors during the radial propagation.
U.S. Pat. No. 4,912,576 to Janz and U.S. Pat. No. 5,448,429 to Cribbs et al. describe methods for writing a servo-pattern with a disk drive's own pair of transducers. Three types of servo-patterns are used to generate three-phase signals that provide a difference signal having a slope directly proportional to velocity. Janz observes that the signal level from a transducer is a measure of its alignment with a particular pattern recorded on the disk. For example, if the flux gap sweeps only forty percent of a pattern, then the read voltage will be forty percent of the voltage maximum obtainable when the transducer is aligned dead-center with the pattern. Janz uses this phenomenon to position the heads by straddling two of three offset and staggered patterns along a centerline path intended for d

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for accurate self-servowriting with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for accurate self-servowriting with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for accurate self-servowriting with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2961920

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.