Computer graphics processing and selective visual display system – Display peripheral interface input device – Touch panel
Reexamination Certificate
2001-01-24
2003-11-11
Shankar, Vijay (Department: 2673)
Computer graphics processing and selective visual display system
Display peripheral interface input device
Touch panel
C345S215000
Reexamination Certificate
active
06646633
ABSTRACT:
TECHNICAL FIELD
The present invention relates to a system and method by which computing devices may more easily recognize input from a user. In particular, the present invention relates to a system and method for implementing a full-screen user interface for data entry using handwritten glyphs.
BACKGROUND ART
As the components required to build a computer system have reduced in size, new categories of computer systems have emerged. One of the new categories of computer systems is the “palmtop” computer system. A palmtop computer system is a computer that is small enough to be held in the hand of a user. Most palmtop computer systems are used to implement various Personal Information Device (PID) applications such as an address book, a daily organizer, and electronic notepads.
Personal Information Devices include the class of computers, personal digital assistants and electronic organizers that tend both to be physically smaller than conventional computers and to have more limited hardware and data processing capabilities. PIDs include, for example, products sold by Palm, Inc. of Santa Clara, Calif., under such trademark as Pilot, and Pilot 1000, Pilot 5000, PalmPilot, PalmPilot Personal, PalmPilot Professional, Palm, and Palm III, Palm V, Palm VII, as well as other products sold under such trade names as WorkPad, Franklin Quest, and Franklin Convey.
PIDs are generally discussed, for example, in U.S. Pat. Nos. 5,125,0398; 5,727,202; 5,832,489; 5,884,323; 5,889,888; 5,900,875; 6,000,000; 6,006,274; and 6,034,686, which are incorporated herein by reference. PIDs typically include a screen and data processor, allowing the PID user to operate a substantial variety of applications relating to, for example: electronic mail, a calendar, appointments, contact data (such as address and telephone numbers), notebook records, expense reports, to do lists, or games. PIDs also often include substantial electronic memory for storing such applications as well as data entered by the user. Due to their substantial variety of applications and uses, personal information devices are becoming increasingly widely used.
Since PIDs and other similar palmtop computer systems are very small, keyboards are generally not efficient input devices. For example, PIDs with keyboards have keyboards that are so small that a user cannot touch-type. Furthermore, to use a keyboard a user must either place the PID system down onto a flat surface so the user can type with both hands or hold the PID system with two hands and type with thumbs only.
Instead of using a keyboard, many PIDs employ a stylus and a touchscreen or digitizer pad as an input system. The stylus and touchscreen combination works well for PIDs since the arrangement allows a user to hold the PID system in one hand while writing with the stylus onto the touchscreen with the other hand.
There is a problem, however, distinguishing between text entry from a user and the regular use of the stylus as a pointing device from the user. In both cases, the PID system has to recognize “touches” by the stylus onto the touchscreen and interpret the intentions of the user.
One prior art approach to this problem requires the use of two or more touchscreen areas, one area configured to recognize touches as the regular use of the stylus as a pointing device from the user, and another area configured to recognize touches as text input. Each touchscreen area is designed to register and recognize strokes from the stylus. In one embodiment, the PID system has an icon and menu touchscreen display area and a smaller text entry touchscreen display area. In such an embodiment, strokes entered in the icon and menu area are interpreted as icon and/or menu manipulations and strokes entered in the text entry area are interpreted as text characters and/or punctuation (e.g., handwriting glyphs and the like). The drawback with such a system is that it requires the partitioning of the display area. PID systems have a limited amount of the display area, and partitioning that limited amount into dedicated regions makes the display seemed even smaller.
Another prior approach is the use of software applications executing on the PID system whereby strokes in the icon and menu area of the PID can also be interpreted as text entry. Although this may solve the problem of imposing dedicated regions on the display, this prior art approach tends to greatly complicate the task of text entry. For example, with a typical PID interface, the act of tapping on the screen with the stylus means “click the thing on the screen where the user tapped.” Unfortunately, the same act of tapping on the screen is also interpreted as text entry, such as, for example, “enter a punctuation mark” or “enter a punctuation shift.” Thus, with the typical PID interface, the usual punctuation shift and similar text entry operations do not work, or are incorrectly interpreted by the PID system. Consequently, various types of “hybrid” approaches are resorted to, such as, for example, requiring the user tap for punctuation in a dedicated text entry area, which defeats the objective of eliminating the requirement of imposing dedicated regions on the touchscreen display.
Thus, what is required is a solution that eliminates the requirement for dedicated areas on a touchscreen display or digitizer pad that partition text entry user input from icon/menu manipulation user input. The required solution should permit a unified touchscreen display capable of performing both regular use of the stylus as a pointing device from the user and text entry. The required solution should be intuitive and compatible with typical PID interfaces with which users have become familiar. The present invention provides a novel solution to the above requirements.
SUMMARY OF THE INVENTION
The present invention provides a solution that eliminates the requirement for dedicated areas on a touchscreen display or digitizer pad that partition text entry user input from icon/menu manipulation user input. The present invention permits a unified touchscreen display capable of performing both regular use of the stylus as a pointing device from the user and text entry. In addition, the present invention is intuitive and compatible with typical PID interfaces with which users have become familiar.
In one embodiment, the present invention is realized as a computer implemented method of generating a touchscreen user interface for a computer system. The touchscreen user interface functions by accepting user input on a PID, palmtop computer system, or other similar touchscreen equipped computing device (e.g., cellphone, etc.). With such a device, a touchscreen area is provided for accepting text input strokes and for accepting icon manipulation strokes, such as, for example, where a user taps, strokes, etc., the surface of the touchscreen with a stylus. In addition to the touchscreen, a sensor is disposed adjacent to the touch screen along an edge of the device. The sensor is a pressure sensitive device (e.g., a pressure sensor) along the edge of the device configured to register user actuations, such as where the user grasps the device more firmly. In implementing the user interface, user input strokes are registered and accepted into the touchscreen input area.
User input strokes into touchscreen input area are interpreted as text input strokes when the sensor is actuated by the user during the user input strokes. For example, to enter text characters, the user grasps the hand held device more firmly to steady the touchscreen as user input strokes are entered, and this firm grasp actuates the sensor disposed adjacent to the touchscreen (e.g., along the edge of the device). User input strokes into the touchscreen input area are interpreted as icon manipulation strokes and not text input strokes when the sensor is not actuated by the user during the user input strokes. For example, the user grasps the hand held device less firmly to perform icon manipulation strokes on the touchscreen. Icon manipulation strokes generally shorter and require less precision than text ent
Palm Source, Inc.
Patel Nitin
Shankar Vijay
Wagner , Murabito & Hao LLP
LandOfFree
Method and system for a full screen user interface and data... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and system for a full screen user interface and data..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for a full screen user interface and data... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3136559