Method and system for a building database manipulator

Data processing: database and file management or data structures – Database design – Data structure types

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C707S793000, C707S793000, C455S039000

Reexamination Certificate

active

06721769

ABSTRACT:

DESCRIPTION
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to database development using computer aided design and, more particularly, to manipulating data from any environment in the world (e.g. cities, buildings, campuses, floors within a building, objects in an outdoor setting, etc.) to construct an electronic building database that can be used to generate definitions of the user's building and site parameters and used with wireless communication system modeling and engineering planning products.
2. Background Description
As wireless communications use increases, radio frequency (RF) coverage within buildings and signal penetration into buildings from outside transmitting sources has quickly become an important design issue for wireless engineers who must design and deploy cellular telephone systems, paging systems, or new wireless systems and technologies such as personal communication networks or wireless local area networks. Designers are frequently requested to determine if a radio transceiver location, or base station cell site can provide reliable service throughout an entire city, an office, building, arena or campus. A common problem for wireless systems is inadequate coverage, or a “dead zone,” in a specific location, such as a conference room. It is now understood that an indoor wireless PBX (private branch exchange) system or wireless local area network (WLAN) can be rendered useless by interference from nearby, similar systems. The costs of in-building and microcell devices which provide wireless coverage within a 2 kilometer radius are diminishing, and the workload for RF engineers and technicians to install these on-premises systems is increasing sharply. Rapid engineering design and deployment methods for microcell and in-building wireless systems are vital for cost-efficient build-out.
Analyzing radio signal coverage penetration and interference is of critical importance for a number of reasons. A design engineer must determine if an existing outdoor large scale wireless system, or macrocell, will provide sufficient coverage throughout a building, or group of buildings (i.e., a campus). Alternatively, wireless engineers must determine whether local area coverage will be adequately supplemented by other existing macrocells, or whether indoor wireless transceivers, or picocells, must be added. The placement of these cells is critical from both a cost and performance standpoint. If an indoor wireless system is being planned that interferes with signals from an outdoor macrocell, the design engineer must predict how much interference can be expected and where it will manifest itself within the building, or group of buildings. Also, providing a wireless system that minimizes equipment infrastructure cost as well as installation cost is of significant economic importance. As in-building and microcell wireless systems proliferate, these issues must be resolved quickly, easily, and inexpensively, in a systematic and repeatable manner.
There are many computer aided design (CAD) products on the market that can be used to design the environment used in one's place of business or campus. WiSE from Lucent Technology, Inc., SignalPro from EDX, PLAnet by Mobile Systems International, Inc., and TEMS and TEMS Light from Ericsson are examples of wireless CAD products. In practice, however, a pre-existing building or campus is designed only on paper and a database of parameters defining the environment does not readily exist. It has been difficult, if not generally impossible, to gather this disparate information and manipulate the data for the purposes of planning and implementation of indoor and outdoor RF wireless communication systems, and each new environment requires tedious manual data formatting in order to run with computer generated wireless prediction models. Recent research efforts by AT&T Laboratories, Brooklyn Polytechnic, and Virginia Tech, are described in papers and technical reports entitled “Radio Propagation Measurements and Prediction Using Three-dimensional Ray Tracing in Urban Environments at 908 MHZ and 1.9 GHz,” (
IEEE Transactions on Vehicular Technology
, VOL. 48, No. 3, May 1999), by S. Kim, B. J. Guarino, Jr., T. M. Willis III, V. Erceg, S. J. Fortune, R. A. Valenzuela, L. W. Thomas, J. Ling, and J. D. Moore, (hereinafter “Radio Propagation”); “Achievable Accuracy of Site-Specific Path-Loss Predictions in Residential Environments,” (
IEEE Transactions on Vehicular Technology
, VOL. 48, No. 3, May 1999), by L. Piazzi and H. L. Bertoni; “Measurements and Models for Radio Path Loss and Penetration Loss In and Around Homes and Trees at 5.85 Ghz,” (
IEEE Transactions on Communications
, Vol. 46, No. 11,November 1998), by G. Durgin, T. S. Rappaport, and H. Xu; “Radio Propagation Prediction Techniques and Computer-Aided Channel Modeling for Embedded Wireless Microsystems,” ARPA Annual Report, MPRG Technical Report MPRG-TR-94-12, July 1994, 14 pp., Virginia Tech, Blacksburg, by T. S. Rappaport, M. P. Koushik, J. C. Liberti, C. Pendyala, and T. P. Subramanian; “Radio Propagation Prediction Techniques and Computer-Aided Channel Modeling for Embedded Wireless Microsystems,” MPRG Technical Report MPRG-TR-95-08, July 1995, 13 pp., Virginia Tech, Blacksburg, by T. S. Rappaport, M. P. Koushik, C. Carter, and M. Ahmed; “Use of Topographic Maps with Building Information to Determine Antenna Placements and GPS Satellite Coverage for Radio Detection & Tracking in Urban Environments,” MPRG Technical Report MPRG-TR-95-14, Sep. 15, 1995, 27 pp., Virginia Tech, Blacksburg, by T. S. Rappaport, M. P. Koushik, M. Ahmed, C. Carter, B. Newhall, and N. Zhang; “Use of Topographic Maps with Building Information to Determine Antenna Placement for Radio Detection and Tracking in Urban Environments,” MPRG Technical Report MPRG-TR-95-19, November 1995, 184 pp., Virginia Tech, Blacksburg, by M. Ahmed, K. Blankenship, C. Carter, P. Koushik, W. Newhall, R. Skidmore, N. Zhang and T. S. Rappaport; “A Comprehensive In-Building and Microcellular Wireless Communications System Design Tool,” MPRG-TR-97-13, June 1997, 122 pp., Virginia Tech, Blacksburg, by R. R. Skidmore and T. S. Rappaport; “Predicted Path Loss for Rosslyn, Va.,” MPRG-TR-94-20, Dec. 9, 1994, 19 pp., Virginia Tech, Blacksburg, by S. Sandhu, P. Koushik, and T. S. Rappaport; “Predicted Path Loss for Rosslyn, Va., Second set of predictions for ORD Project on Site Specific Propagation Prediction” MPRG-TR-95-03, Mar. 5, 1995, 51 pp., Virginia Tech, Blacksburg, by S. Sandhu, P. Koushik, and T. S. Rappaport. These papers and technical reports are illustrative of the state of the art in site-specific propagation modeling and show the difficulty in obtaining databases for city environments, such as Rosslyn, Va. While the above papers describe a research comparison of measured vs. predicted signal coverage, the works do not demonstrate a systematic, repeatable and fast methodology for creating an environmental database, nor do they report a method for visualizing and placing various environmental objects that are required to model the propagation of RF signals in the deployment of a wireless system in that environment.
SUMMARY OF THE INVENTION
It is therefore an object of the invention to provide a method for manipulating drawings and electronic files to build databases for use in planning the positioning of components and for designing, installing and optimizing a wireless communication system. In the method, raster scanned images of an environment may be entered or object files in various formats may be used as input to define an environment in which a wireless system is to be implemented. Detailed information about the location, radio frequency attenuation, color, and other physical information of an object, such as intersections of the object with the ground, floors, ceilings, and other objects in the environment is stored in a drawing database.
It is another object of the invention to provide a computerized drawing in a true three-dimensional environment based on input data

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for a building database manipulator does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for a building database manipulator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for a building database manipulator will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3266274

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.