Method and sensor arrangement for the determination of the...

Electrical generator or motor structure – Dynamoelectric – Rotary

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C310S090500

Reexamination Certificate

active

06249067

ABSTRACT:

The invention relates to a method and to a sensor arrangement for the determination of the radial position of a permanent magnetic rotor in an electromagnetic rotary drive which is designed as a bearing-free motor in which the magnetic flux of the permanent magnetic rotor is first determined and thereafter actively measured with respect to placed sensors to support and drive the rotor with respect to the stator.
BACKGROUND OF THE INVENTION
A bearing-free motor with a permanent magnetic rotor is an electromagnetic rotary drive which comprises a permanent magnetically excited rotor and a stator, with the rotor being journalled without contact by means of magnetic forces. The characteristic to which the bearing-free motor owes its name is that it has no separate magnetic bearing for the rotor. For this the stator is designed as a bearing and drive stator and the rotor as a passive magnetic rotor which serves both as a bearing rotor and as a drive rotor. The stator is designed or provided with electrical windings respectively in such a manner that it produces an electromagnetic rotary field which exerts, on the one hand, a torque on the rotor which drives its rotation about the axis of rotation and which, on the other hand, exerts a transverse force on the rotor which can be set in any manner desired so that its radial position with respect to a plane perpendicular to the axis of rotation can be predetermined or actively controlled respectively. Thus in the operating state the rotor can be actively controlled and driven respectively by means of the electric windings of the stator with respect to three degrees of freedom, namely the rotation about the axis of rotation and the radial position in the plane perpendicular to the axis of rotation (two degrees of freedom).
With respect to three further degrees of freedom, namely tiltings with respect to the plane perpendicular to the axis of rotation (two degrees of freedom) and the axial position the rotor is passively magnetically stabilised, that is, not in a controllable manner, by reluctance forces. Thus in the operating state the rotor can be both driven and journalled without contact through the magnetic interaction between the bearing/drive stator and the rotor without separate magnetic bearings being present for this.
The term “bearing-free motor with a permanent magnetic rotor” is to be understood in this sense for the following explanations. With respect to further details of the design and of the excitation and regulation respectively of the bearing-free motor, reference is made here to U.S. Pat. No. 6,100,618.
In U.S. Pat. No. 6,100,618 a bearing-free motor of this kind is disclosed in the example of a rotation pump. In the latter the rotor of the bearing-free motor is provided with vanes and thus forms an integral rotor, which means that it takes over the function of the rotor of the pump in addition to the function of the rotor of the electric motor. Pumps of this kind are advantageous in particular for those uses in which the fluid to be forwarded must not be contaminated, for example for the forwarding of biological liquids such as blood or highly pure liquids such as purest water. In addition rotation pumps of this kind are suitable for the forwarding of aggressive liquids which would destroy mechanical bearings a short time.
In comparison with conventional pumps with a magnetically journalled rotor, pumps of this kind, which operate in accordance with the principle of the bearing-free motor, have the advantage of being extremely compact and space saving and nevertheless having all the advantages of the non-contact magnetic journalling of the rotor even at high performance or forwarding power respectively. This is one of the reasons why pumps of this kind are suitable among other things as blood pumps for uses inside and outside the body.
For the operation of a bearing-free motor with a permanent magnetically excited rotor, in particular for the active regulation of the position of the rotor, which usually takes place by means of a vector regulation method or a field oriented regulation method respectively, it is necessary to know the momentary position of the rotor, that is, its position relative to a plane which is perpendicular to the axis of rotation of the rotor, namely X-Y plane of the stator system. Different possibilities for this are suggested in U.S. Pat. No. 6,100,618. An eddy current distance sensor can be provided in order to measure the distance to a conducting layer which is integrated in the rotor, or optical sensors can be used for the determination of the radial position of the rotor. As further alternatives it is proposed to arrange eight flux probes in the air gap between the rotor and the stator and to determine the radial position of the rotor through weighted summation of the partial fluxes which are measured with the help of the flux probes in each case over half the periphery in the X direction and in the Y direction as well as in each case in the opposite direction, taking of the absolute value and subsequent formation of the difference of the components belonging to the X direction and the opposite direction and, respectively, belonging to the Y direction and the opposite direction.
The present invention deals with the object of proposing another method and another sensor arrangement by means of which the radial position of a permanent magnetic rotor in a bearing-free motor can be reliably determined in a simple manner, economically and with as little cost and complexity as possible.
SUMMARY OF THE INVENTION
In accordance with the invention a method for the determination of the radial position of a permanent magnetic rotor in an electromagnetic rotary drive which is designed as a bearing-free motor with a stator and the magnetically journalled rotor is thus proposed in which the magnetic flux which is produced by the rotor is determined by means of sensors in the space between the rotor and the stator at least at two different measurement locations. The radial position of the rotor is determined with the help of the magnetic flux which is determined at the measurement locations and with the help of the magnetic flux which results at the measurement locations when the rotor is arranged so as to be centered.
Since that magnetic flux is used for the determination of the radial position of the rotor which the rotor produces at the measurement locations when it is centered with respect to its radial position, it is sufficient even in an eccentric position of the rotor to determine the flux that it produces at two different measurement locations in the space between the stator and the rotor to establish the radial position of the rotor. Thus fewer sensors for the determination of the magnetic flux are required for the establishment of the momentary radial position of the rotor than e.g. for the solution proposed in U.S. Pat. No. 6,100,618. Consequently the method in accordance with the invention is simpler in particular in regard to the complexity of the apparatus and thus also more economical. In addition the method in accordance with the invention is also significantly less complicated and expensive with respect to the signal processing and evaluation required without it being necessary to make concessions on the reliability of the position determination. The method in accordance with the invention furthermore has the advantage of being very flexible, since it is suitable at least for all patterns of the rotor magnetisation which are relevant in practice. Also, the number of pole pairs of the permanent magnetic rotor is subject to no restriction.
BRIEF DESCRIPTION OF THE DRAWINGS
In those embodiments of the rotor in particular in which the rotor magnetisation has zero crossings the magnetic flux in the space between rotor and the stator is preferably measured at three different measurement locations which are chosen in such a manner that for an arbitrary rotor angle the angular position of at least two of the measurement locations is different from the angular position of the zero crossings of th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and sensor arrangement for the determination of the... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and sensor arrangement for the determination of the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and sensor arrangement for the determination of the... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2469450

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.