Method and mechanism for recovering ink-jetting head and cap...

Incremental printing of symbolic information – Ink jet – Ejector mechanism

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C347S029000

Reexamination Certificate

active

06390594

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a method and mechanism for recovering an ink-jetting head and a cap utilized for sucking nozzles.
To recover the ink-jetting head, there have been proposed the following technologies, as a method for discharging air bubbles and dusts remained in an ink-jetting head.
(The First Technology)
Head nozzle holes of an ink-jetting head emit ink-particles directly sticking on a recording sheet. A lip portion of the cap, utilized for sucking nozzles, covers the surface equipped with the head nozzle holes or its peripheral surface. Then, air bubbles and dusts are discharged from the head nozzle holes by depressurizing the air in the space covered with the lip portion, and thereby, the ink-jetting, head is recovered. The electro-magnetic leak valve is equipped in midway of a pipeline between the cap and the pump to absorb the air for the depressurizing operation.
(The Second Technology)
In the ink-jetting head, which emits ink-particles directly sticking on a recording sheet, the cap, utilized for sucking nozzles, always and air-tightly covers the surface equipped with head nozzle holes, from which ink-particles are emitted, or its peripheral surface to discharge air bubbles and dusts from the head nozzle holes by depressurizing the air at the surface equipped with head nozzle holes or its peripheral surface. The electro-magnetic leak valve, employed for the air depressurizing operation, is provided in the cap.
(The Third Technology)
The water repellent finishing is applied for the inner surface of the cap utilized for sucking nozzles, and/or the ink-absorbing member is provided in the cap.
When employing the first technology and/or the second technology, however, it is difficult to clean up ink-particles and dusts stuck on the nozzle plate of the ink-jetting head. Further, it is the problem in the third technology that the ink-absorbing member is necessary to be provided and the effect of the water repellent finishing for the cap is liable to deteriorate in a long time usage.
SUMMARY OF THE INVENTION
To overcome the abovementioned drawbacks in conventional mechanisms for recovering the ink-jetting head and conventional caps utilized for sucking nozzles, it is an object of the present invention to provide a method and a mechanism for recovering an ink-jetting head, which could effectively discharge ink-particles stuck on the surface of nozzle holes and its peripheral surface to recover the ink-jetting head.
Another object of the present invention is to provide a cap utilized for sucking nozzles, which makes it possible to surely discharge air-bubbles, dusts, etc., remaining in the ink-jetting head, and ink-particles stuck on the surface of nozzle holes and its peripheral surface to surely recover the ink-jetting head.
Accordingly, to overcome the cited shortcomings, the abovementioned objects of the present invention can be attained by mechanisms, ink-jet printers and caps described as follow.
(1) A mechanism for recovering an ink-jetting head, comprising: a cap to cover at least a nozzle hole of the ink-jetting head; a cap movement mechanism to move the cap relative to a nozzle plate on which the nozzle hole is equipped; a depressurizing device; and a controller to control the cap movement mechanism, so that the cap moves relative to the nozzle plate to a first position at which the cap air-tightly seals a region of the nozzle plate including at least the nozzle hole, and moves relative to the nozzle plate to a second position at which the cap contacts the nozzle plate to generate a gap between a lip portion of the cap and the nozzle plate, wherein the depressurizing device operates to depressurize a space covered by the cap, when the cap is positioned at the first position, and the depressurizing device operates, when the cap is positioned at the second position.
(2) The mechanism of item 1, wherein the cap movement mechanism moves the cap relative to the nozzle plate to the first position at which the cap covers a region of the nozzle plate including all nozzle holes equipped on the nozzle plate.
(3) The mechanism of item 1, wherein the cap movement mechanism moves the cap relative to the nozzle plate to the first position at which the nozzle plate and the cap air-tightly contact each other without any gaps.
(4) The mechanism of item 1, wherein the cap movement mechanism comprises an urging section, the controller controls the urging section, so that the urging section urges the cap against the nozzle plate with a first urging force to position the cap at the first position, and the urging section urges the cap against the nozzle plate with a second urging force, being smaller than the first urging force, to position the cap at the second position.
(5) The mechanism of item 4, wherein the urging section comprises a first urging member and a second urging member having a urging force greater than that of the first urging member, and the controller controls the first urging member and the second urging member, so that both the first urging member and the second urging member urge the cap against the nozzle plate to position the cap at the first position, and only the first urging member urges the cap against the nozzle plate to position the cap at the second position.
(6) An ink-jet printer, comprising: an ink-jetting head having a nozzle plate equipped with nozzle holes, through which an ink stored in an ink chamber is emitted; a cap to cover at least one of the nozzle holes of the ink-jetting head; a cap movement mechanism to move the cap relative to the nozzle plate; a depressurizing device; and a controller to control the cap movement mechanism, so that the cap moves relative to the nozzle plate to a first position at which the cap air-tightly seals a region of the nozzle plate including at least one of the nozzle holes, and moves relative to the nozzle plate to a second position at which the cap contacts the nozzle plate to generate a gap between a lip portion of the cap and the nozzle plate, wherein the depressurizing device operates to depressurize a space covered by the cap, when the cap is positioned at the first position, and the depressurizing device operates, when the cap is positioned at the second position.
(7) The ink-jet printer of item 6, wherein the cap movement mechanism moves the cap relative to the nozzle plate to the first position at which the cap covers a region of the nozzle plate including all nozzle holes equipped on the nozzle plate.
(8) The ink-jet printer of item 6, wherein the cap movement mechanism moves the cap relative to the nozzle plate to the first position at which the nozzle plate and the cap air-tightly contact each other without any gaps.
(9) The ink-jet printer of item 6, wherein the cap movement mechanism comprises an urging section, the controller controls the urging section, so that the urging section urges the cap against the nozzle plate with a first urging force to position the cap at the first position, and the urging section urges the cap against the nozzle plate with a second urging force, being smaller than the first urging force, to position the cap at the second position.
(10) The ink-jet printer of item 9, wherein the urging section comprises a first urging member and a second urging member having a urging force greater than that of the first urging member, and the controller controls the first urging member and the second urging member, so that both the first urging member and the second urging member urge the cap against the nozzle plate to position the cap at the first position, and only the first urging member urges the cap against the nozzle plate to position the cap at the second position.
(11) The ink-jet printer of item 6, wherein a surface of a part of the cap opposite the nozzle plate is hydrophilic for the ink.
(12) A cap, utilized for covering an ink-jetting head which includes a nozzle plate equipped with a nozzle hole from which ink-particles are emitted, comprising: a base body, moving relative to the ink-jetting head; and a lip portion, formed on a circumf

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and mechanism for recovering ink-jetting head and cap... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and mechanism for recovering ink-jetting head and cap..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and mechanism for recovering ink-jetting head and cap... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2887465

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.