Method and means for data management in a laboratory

Registers – Systems controlled by data bearing records – Inventory

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C235S375000, C235S462010, C235S472010, C235S470000, C235S474000

Reexamination Certificate

active

06832722

ABSTRACT:

TECHNICAL FIELD
The present invention relates to a method for data management in an analytical laboratory, particularly in a laboratory for analyzing biological specimens from patients.
The invention also relates to a system for data management in an analytical laboratory.
Finally, the invention relates to a container for use in the method and with the system mentioned above.
PRIOR ART
In the era of total quality, high standards of safety and reliability are required in the diagnostic field as in other areas. In spite of the efforts made by manufacturers of equipment and materials for diagnostic analysis, however, situations occur in the course of application in the analytical laboratory and/or in a hospital complex which give rise to errors and thus reduce the quality of the results obtained.
At the present time, containers of various types, particularly test tubes, cups, racks, microplates and others, are used for carrying out a multiplicity of analyses of the diagnostic type. In the present description and the following claims, the term “container” denotes any device suitable for containing a biological specimen to be analyzed. The specimen can be a biological specimen (for example blood, serum or urine) or a specimen of a different kind, for example a fragment of tissue, or even a DNA specimen. The container can be a container in which has been placed the specimen taken directly from the patient, or a container in which has been placed a fraction of a specimen taken previously and placed in an intermediate container. In this case, reference is made, for example, to a “mother test tube” and a “daughter test tube”. The containers can be simple vessels for the biological specimen, or can also contain a preparation which is designed to react with the specimen for the execution of the subsequent analyses.
In the present description and the attached claims, the term “analytical laboratory” denotes any structure in which analyses of the diagnostic type or the like are carried out on biological specimens taken from patients.
There are currently various methods for data management in analytical laboratories, which also vary in respect of the degree of automation of each structure. For example, in a particularly simple management method, the patient's name is handwritten on a white label provided on the container. In a more advanced method, a patient code is associated with each patient whose data are acquired by a central computer (Host Computer). In the subsequent processing, the patient is identified by means of the patient code instead of by his own forename and surname. In this case, it is the patient code that will be written on the white label applied to the container.
In other procedures, a sheet with attached self-adhesive labels bearing the patient code in the form of a bar code is printed at the moment of generation of the patient code. The patient will then go with these labels to the specimen-taking center, where the operator will take the biological specimen, for example blood. In this case, the operator does not have to write the name or the patient code on the white label previously applied to the container, but can simply detach the self-adhesive label from the sheet supplied by the patient and apply the label to the container in which the biological specimen for analysis is placed.
The container or containers identified in this way are then sent to one or more pieces of equipment which carry out the required analyses. In the present description, these pieces of equipment will be indicated summarily by the term “analyzers”. The term “analyzer” denotes any equipment capable of carrying out an analysis on a biological specimen. While carrying out analyses, the analyzers acquire the patient code appearing on the container and then combine the patient code with the result of the analysis. The analyzers can be controlled by their own incorporated microprocessors, by electronic computers interfaced with the analyzers, or by a remote computer, for example the central computer which has acquired the patient data and generated the patient code.
In some cases, one or more containers are sent to pieces of equipment which take the biological specimen from a single container (“mother test tube”) and distribute it into other containers (“daughter test tubes”), for carrying out different analyses on the same specimen. In this case, the pieces of equipment are programmed according to a job sheet so that they are capable of determining which containers the fractions of the biological specimen of which patient have been distributed into.
The analyzers and any machines which distribute the specimen from “mother” test tubes to “daughter” test tubes are connected to the central computer in a suitable way. The central computer thus receives the results of the analyses carried out by the various analyzers associated with the patient codes of the individual patients initially acquired. In this way it proceeds to print the report.
Even if there is maximum automation of the data management system in the analytical laboratory, errors due to various causes may occur and give rise to serious consequences in that the patients receive results relating to biological specimens of different patients.
A first set of errors originates from the system of labeling with patient codes. A first and more evident error is the human error which consists in attaching a label bearing the bar code of a patient to the wrong container. This error is commonly caused by the uncomfortable conditions in which the personnel have to work in the specimen-taking room.
This is because the operator in the specimen-taking center is in direct contact with the biological material from which he must protect himself by using, at least, rubber gloves, and in these conditions he must detach the adhesive label with the printed patient code and attach it to the patient specimen-taking container in front of him after having identified it on the job sheet.
Specimen-taking containers vary according to their manufacturers, and this gives rise to numerous problems, since the area for the application of the label to the container is not always compatible with the size of the label. Additionally, the label has to be applied to the container so that it is as straight as possible, to prevent the analyzer reading system, which is specific for each piece of equipment, from having difficulties in identification, from identifying the label incorrectly, or from being simply unable to read it. In this respect, the quality of printing of the patient code printed by the central computer is also very important, since there are considerable differences in sensitivity between different code readers, according to the type and programming of each reader.
The consequences of all these possible events can easily be imagined; they range from the allocation of a different result to the blocking or slowing of the data stream of the routine, due to bottlenecks in the patient code recognition model downstream of the central computer.
The use of a sheet carrying a plurality of self-adhesive labels, the number of which usually exceeds that of the containers which are actually to be used, is a source of waste, since for each patient several unused labels are frequently thrown away. The presence of left over labels increases the risk that left over labels will be erroneously applied to containers for a different patient. Moreover, the use of self-adhesive labels makes it necessary to print the whole patient sheet on self-adhesive material which is expensive.
The operation of detaching and applying the adhesive labels is time-consuming and laborious and reduces the time available for personnel responsible for specimen taking, thus increasing the waiting time for specimen taking. In certain cases, this drawback is overcome by the employment of an auxiliary operator responsible solely for applying the labels, so that the person taking the specimen is released from this task. However, this significantly increases personnel costs, or diverts personnel from more im

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and means for data management in a laboratory does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and means for data management in a laboratory, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and means for data management in a laboratory will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3285922

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.