Method and materials for enhancing the adhesion of SPD...

Optical: systems and elements – Optical modulator – Light wave temporal modulation

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06271956

ABSTRACT:

FIELD OF INVENTION
The present invention relates to methods and materials useable with SPD films to improve the adhesion of the films to a variety of surfaces, especially substrates such as glass or plastic sheets coated with a transparent, electrically conductive coating.
BACKGROUND
Light valves have been known for over sixty years for modulation of light. As used herein, a light valve may be described as a cell formed of two walls that are spaced apart by a small distance, at least one wall being transparent, the walls having electrodes thereon usually in the form of transparent electrically conductive coatings. The cell contains a light-modulating element (sometimes herein referred to as an “activatable material”), which may be either a liquid suspension of particles or a plastic film in which droplets of a liquid suspension of particles are distributed.
The liquid suspension (sometimes herein referred to as “a liquid light valve suspension”) comprises small particles suspended in a liquid suspending medium. In the absence of an applied electrical field, the particles in the liquid suspension assume random positions due to Brownian movement, and hence a beam of light passing into the cell is reflected, transmitted or absorbed, depending upon the cell structure, the nature and concentration of the particles and the energy content of the light. The light valve is thus relatively dark in the OFF state. However, when an electric field is applied through the liquid light valve suspension in the light valve, the particles become aligned and for many suspensions most of the light can pass through the cell. The light valve is thus relatively transparent in the ON state. Light valves of the type described herein are also known as “suspended particle devices” or “SPDs”.
Light valves have been proposed for use in numerous applications including e.g., alphanumeric displays and television displays; filters for lamps, cameras, optical fibers and for displays; and windows, sunroofs, sunvisors, eyeglasses, goggles and mirrors and the like to control the amount of light passing therethrough or reflected therefrom as the case may be. Examples of windows, without limitation, include architectural windows for commercial buildings, greenhouses and residences, windows for automotive vehicles, boats, trains, planes and spacecraft, windows for doors including peepholes, and windows for appliances such as ovens and refrigerators including compartments thereof.
For many applications, it is preferable for the activatable material, i.e. the light-modulating element, to be a plastic film rather than a liquid suspension. For example, in a light valve used as a variable light transmission window, a plastic film, in which droplets of liquid suspension are distributed, is preferable to a liquid suspension alone because hydrostatic pressure effects e.g., bulging associated with a high column of liquid suspension can be avoided through use of a film, and the risk of possible leakage can also be avoided. Another advantage of using a plastic film is that, in a plastic film, the particles are generally present only within very small droplets and, hence, do not noticeably agglomerate when the film is repeatedly activated with a voltage.
A “light valve film” as used herein refers to a film having droplets of a liquid suspension of particles distributed in the film or in part of the film.
Light valve films made by cross-linking emulsions are known. See U.S. Pat. Nos. 5,463,491, 5,463,492 and 5,728,251 and U.S. patent application Ser. No. 08/941,599, all of which are assigned to the assignee of the present invention. All of the above patents and patent applications and any other patents and references cited therein or elsewhere herein are incorporated into this application by reference thereto.
The Liquid Light Valve Suspension
1. Liquid Suspending Media and Stabilizers
A liquid light valve suspension may be any liquid light valve suspension known in the art and may be formulated according to techniques known to one skilled in the art. The term “liquid light valve suspension” as used herein means a “liquid suspending medium” in which a plurality of small particles are dispersed. The “liquid suspending medium” comprises one or more non-aqueous, electrically resistive liquids in which there is preferably dissolved at least one type of polymeric stabilizer which acts to reduce the tendency of the particles to agglomerate and to keep them dispersed and in suspension.
The liquid light valve suspension useful in the present invention may include any of the liquid suspending media previously proposed for use in light valves for suspending the particles. Liquid suspending media known in the art which are useful herein, include, but are not limited to the liquid suspending media disclosed in U.S. Pat. Nos. 4,247,175 and 4,407,565. In general one or both of the liquid suspending medium or the polymeric stabilizer dissolved therein is chosen so as to maintain the suspended particles in gravitational equilibrium.
The polymeric stabilizer, when employed, can be a single type of solid polymer that bonds to the surface of the particles but also dissolves in the non-aqueous liquid or liquids of the liquid suspending medium. Alternatively, there may be two or more solid polymeric stabilizers serving as a polymeric stabilizer system. For example, the particles can be coated with a first type of solid polymeric stabilizer such as nitrocellulose which, in effect, provides a plain surface coating for the particles and one or more additional types of solid polymeric stabilizer that bond to or associate with the first type of solid polymeric stabilizer and also dissolve in the liquid suspending medium to provide dispersion and steric protection for the particles. Also, liquid polymeric stabilizers may be used to advantage, especially in SPD light valve films, as described in U.S. Pat. No. 5,463,492.
2. Particles
Inorganic and organic particles may be used in a light valve suspension, and such particles may be light-absorbing or light-reflecting in all or part of the visible portion of the electromagnetic spectrum.
Conventional SPD light valves have generally employed polyhalide particles of colloidal size. As used herein the term “colloidal” when referring to particle size shall mean that a particle has a largest dimension averaging 1 micron or less. Preferably, polyhalide or other types of particles used or intended for use in an SPD light valve suspension will have a largest dimension which is less than one-half of the wavelength of blue light i.e., 2000 Angstroms or less to keep light scatter extremely low.
Prior Art Film Adhesion Problems
It has been observed in the prior art that when an SPD film emulsion was placed in between and in direct contact with the indium tin oxide (“ITO”) electrodes of two ITO-coated glass or plastic substrates, and then cured with ultraviolet radiation, the cured film exhibited relatively good adhesion to both ITO-coated substrates.
However, in order to permit degassing of the emulsion and volatilization of any trace material either in the emulsion to begin with or formed when the film is cured, it is often preferable to cure the film with one film face uncovered and open to the atmosphere or uncovered and in an inert atmosphere as described in U.S. Pat. No. 5,728,251. In the case of such an SPD film which is cured with one surface uncovered, it has been found that the adhesion of the cured uncovered surface which has cured SPD film thereon to an ITO-coated or other substrate (usually referred to herein as the “applied surface”), is often less good than if the applied surface had been sandwiched and in contact with the uncured SPD film on the ITO-coated substrate prior to and during the curing process. This problem is caused by a tendency of the cured uncovered film surface to form a crust and therefore to lose some of its tackiness, especially if cured for a relatively long time.
Although the aforesaid adhesion problem is discussed above mainly in terms of ITO-coated substrates, it should be understood

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and materials for enhancing the adhesion of SPD... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and materials for enhancing the adhesion of SPD..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and materials for enhancing the adhesion of SPD... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2497073

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.