Method and kit for transvenously accessing the pericardial...

Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S500000

Reexamination Certificate

active

06200303

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to the field of cardiology. More specifically, the invention relates to a method and kit for diagnosing and treating the heart by facilitating access to the pericardial space.
2. Background Art
An important problem in cardiology is the provision of a safe method and kit for diagnosing and treating the heart selectively and without thoracotomy (open chest surgery). Diagnosis or treatment may be pharmacologic or electrophysiologic. For example, in order to deliver electrical stimuli directly to the heart for the purpose of cardioversion or defibrillation, patients often undergo a thoracotomy under general anesthesia for attachment of a “patch” electrode to the epicardial surface. This procedure requires an extensive incision of the pericardium. The “patch” electrode provides a large electrode surface area in contact with the heart so that a sufficient mass of cardiac tissue may be depolarized. Thoracotomy creates the additional complication of wound healing.
It is desirable to provide a method and kit for placing the defibrillation/cardioversion electrodes in contact with the heart muscle without thoracotomy. U.S. Pat. Nos. 4,181,562 and 4,319,562 to Crosby, and U.S. Pat. No. 5,033,477 to Chin et al. disclose methods for placing electrodes in contact with the heart muscles from within the pericardial space without the need for thoracotomy. Access to the pericardial space is gained via a sub-xiphoid route. This involves penetrating the chest wall below the xiphoid process.
The sub-xiphoid route has several disadvantages. First, because the pericardial sac which surrounds the heart is a tight-fitting fibrous membrane, the pericardial space is so small that it is difficult to penetrate the sac without also puncturing, and thereby, damaging the heart itself. Second, accessing the heart via the sub-xiphoid route entails a high risk of infection. These are likely to account for its failure to be adopted into common clinical practice.
In fact, the sub-xiphoid route is presently used almost solely for pericardiocentesis, a process for the aspiration of excess fluid from the pericardial sac. Pericardiocentesis is normally performed to treat cardiac tamponade, a buildup of excess fluid in the pericardial sac. The excess fluid distends the pericardial sac away from the heart such that the risk of puncturing the heart is reduced, but the risk of infection remains high.
U.S. Pat. No. 4,884,567 to Elliott et al., U.S. Pat. No. 4,946,457 to Elliott, and U.S. Pat. No. 4,998,975 to Cohen et al. disclose methods for transvenous implantation of electrodes into the pericardial space. A catheter is introduced through a vein to the atrium where the lateral atrial wall is penetrated in order to introduce electrodes into the pericardial space. A major problem encountered by these methods is how to penetrate the lateral atrial wall without also puncturing the tight-fitting pericardium.
The methods of these patents attempt to solve this problem through several elaborate schemes. One scheme involves using complex catheters to attach to the lateral atrial wall and to pull it back away from the pericardium prior to penetrating the wall in order to avoid puncturing the pericardium. Another approach involves injecting a fluid into the pericardial space to distend the pericardium away from the lateral atrial wall prior to penetrating the wall.
U.S. Pat. No. 4,991,578 to Cohen discloses a method for implanting epicardial defibrillation electrodes into the pericardial space. The method involves entering the pericardial space via the sub-xiphoid route. As discussed above, it is difficult to penetrate the pericardial sac via the sub-xiphoid route without also puncturing, and thereby damaging, the heart itself. Like the method discussed directly above, the '578 patent discloses injecting a fluid into the pericardial space or attaching and pulling on a catheter to distend the pericardial sac away from the heart.
Because each of these known methods is intrinsically cumbersome and hazardous, they have not gained widespread use. What is needed is a simpler, safer, and more effective way of accessing the pericardial space for delivery of electricity directly to the heart muscle.
In addition to providing a convenient location for placement of electrodes, the confines of the pericardial sac provide an excellent opportunity to isolate the heart for treatment and diagnosis. By introducing pharmacologic agents directly into the pericardial sac, high cardiac drug concentrations can be achieved without spillage or systemic distribution to other organs or tissues.
The pericardial sac has been used for containment of pharmacologic agents for a number ofyears in experimental settings, but delivery has heretofore required open chest surgery to access the pericardial space. U.S. Pat. Nos. 4,003,379 and 4,146,029 to Ellinwood disclose an implantable medication dispensing apparatus which is adapted to dispense drugs to the pericardial sac over a long period of time, for example, to prevent arrhythmias. The Ellinwood patents, however, do not teach a method for routing the drugs into the pericardial sac.
U.S. Pat. No. 5,269,326 to Richard L. Verrier discloses a method for transvenously accessing the pericardial space via the right auricle. The full text of the Verrier '326 patent is incorporated herein by reference as if reproduced in full below. The transvenous method described by Verrier overcomes the limitations noted above with prior methods by providing a method for safely and reliably introducing a catheter and/or electrodes into the pericardial space. Each of the following embodiments of the present invention improve upon the Verrier '326 patent by providing a specific method for exploiting the route discovered by Verrier.
SUMMARY OF THE INVENTION
The disclosed methods and kits for accessing the pericardial space take advantage of the fact that the right auricle is a thin-walled, low-pressure structure which can be readily penetrated without damaging the pericardium or the epicardium. A guide catheter is passed through a selected peripheral vein to establish a transvenous route to the right auricle of the heart.
In one embodiment, an infusion guide wire and a leading guide wire are passed through the guide catheter and into the right auricle so that a distal end of the leading guide wire is positioned against a wall of the right auricle. The leading guide wire is located within a lumen of the infusion guide wire and preferably protrudes outward from a distal end of the infusion guide wire.
The wall of the right auricle is then pierced with the distal end of the leading guide wire. This is preferably accomplished by simultaneously applying an axial force to a proximal end of the infusion guide wire and a portion of the leading guide wire that extends from the proximal end of the infusion guide wire until the distal end of the leading guide wire pierces the wall of the right auricle. It is noted that this can be successfully performed without attaching/fixing a distal end of the guide catheter to the wall of the right auricle. Alternatively, although not preferably, if the leading guide wire does not protrude from the distal end of the infusion guide wire, then the wall of the right auricle can be pierced by the distal end of the infusion guide wire.
After the wall of the right auricle is pierced, the infusion guide wire and/or the leading guide wire can be advanced into the pericardial space. Once in position, the infusion guide wire and/or the leading guide wire can be used as a conduit over which a desired catheter may be introduced for performing a specific medical procedure.
To place the guide catheter in position, a peripheral vein such as one of the femoral veins is selected. An introducer sheath is then placed into the selected vein to protect the entry site. The guide catheter is introduced into the vein through the sheath and is guided downstream through the vein to one of the venae cavae, through the one venae cavae to the right

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and kit for transvenously accessing the pericardial... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and kit for transvenously accessing the pericardial..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and kit for transvenously accessing the pericardial... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2496053

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.