Method and equipment for detecting pattern defect

Radiant energy – Invisible radiant energy responsive electric signalling – Ultraviolet light responsive means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06800859

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a method and equipment for detecting a pattern defect; and, more specifically, the invention relates to a method and equipment suitable to detect and test a defect of a pattern formed in a semiconductor wafer, a liquid crystal display, a photomask, etc.
Conventionally, detecting equipment, such as described in Japanese Published Unexamined Patent Application No. 7-318326 (prior art No. 1), scans an image of a pattern under test (hereinafter referred to as a “test pattern” for simplicity) using an imager, such as a line sensor etc., and is able to recognized nonconformity as a defect by comparing grayscale levels of the detected image signal to an image signal delayed by a prescribed time while moving the test pattern.
Moreover, a conventional technology concerning detection of a defect in a test pattern is disclosed in Japanese Published Unexamined Patent Application No. 8-32029. (prior art No. 2). This prior art 2 is intended to be applied to a test pattern on a semiconductor wafer etc. where a high density area of the test pattern, such as a memory mat part etc., and a low density area of the tent pattern, such as a peripheral circuit etc., exist in a mixed manner. This publication describes a method comprising the steps of: converting a digital image signal that is obtained through AD conversion of an image signal detected from the above-described test pattern into grayscale levels so that the brightness or the contrast ranging between the high density area and the low density area of the test pattern is converted into a predetermined relation based on a brightness-frequency relationship of the above-described detected image signal; performing a function approximation on both the image signal thus grayscale converted and an image signal to be compared (hereinafter referred to as a “comparison image signal”, therewith, which was also grayscale converted; integrating the difference between the two curves represented by the function approximations; aligning two image signals which were grayscale converted based on information of high-precision detection of misalignment obtained from the integral value; and detecting a minute defect with high-precision by comparing test patterns while keeping the alignment between two image signals optimally.
Moreover, in the case of detecting a photomask, conventionally it has been proposed that the light used in the detecting should be the same as the exposure light so as to detect only a detrimental defect which will cause trouble in the actual exposure; accordingly, with this in mind, it has been suggested that inspection of a photomask exposed with ultraviolet light (hereinafter referred to as “UV light”) should e performed using the same UV light as the exposure light. Patent applications concerning this technology, as a technology to test the appearance of a circuit pattern on a photomask, include Japanese Published Unexamined Patent Application No. 8-94338 (prior art No. 3) and No. 10-78668 (prior art No. 4).
In addition, a technology to measure the amount of phase shift in a phase shift mask is disclosed in Japanese Published Unexamined Patent Application No. 10-62258 (prior art No. 5) and No. 10-78648 (prior art No. 6).
Furthermore, a technology to clearly visualize a circuit pattern and a foreign material optically by inspecting a specimen with visible light and UV light by making good use of a fact that materials used in a process have different absorption characteristics for visible light and UV light is disclosed in Japanese Published Unexamined Patent Application No. 4-165641 (prior art No. 7) and No. 4-282441 (prior art No. 8).
Moreover, means for measuring optically an external form of an object using an interferometer is disclosed in Japanese Published Unexamined Patent Application No. 4-357407 (prior art No. 9), wherein UV light is applied to the interferometer.
LSI fabrication in recent years has progressed toward finer microfabrication in circuit patterns formed on wafers in response to a need for high-integration, and a pattern having a width (feature size) as small as 0.25 &mgr;m or less is being required, reaching almost a limit of the available imaging optical systems. Therefore, efforts to attain a high NA in an imaging optical system and to apply the optical super-resolution technology, as well as efforts to provide more sophisticated image processing, are being made. The above-described prior arts 1 and 2 are directed to techniques that use those results. However, implementation of a high NA has already reached its physical limit, and this measure has a problem of weakness for patterns having a large pattern step height. Also, the optical super-resolution technology and sophistication of image processing have a problem of limited applicability because of their non-linear response.
Therefore, an attempt to shorten the wavelength of light used in defect detection, from a visible radiation region in conventional use to a UV light region, is an essential approach.
On the other hand, the idea that the same light source as exposure light should be used, which has been originally devised for a photomask, is effective for prior arts 5 and 6 for measuring the amount of phase shift. This is because the amount of phase shift is directly linked with the wavelength of the light source. However, in case defects are to be detected by detecting the appearance of the whole surface of a test sample or a large area of a circuit pattern comparable to it, the technology wherein a wavelength of detecting light is chosen to be the same as the exposure light (prior arts 3 and 4) is not necessarily an appropriate technique.
This is because the pattern transfer capability by exposure cannot be determined only by the wavelength of the light source and the conditions of the optical system. The transfer capability is closely connected with various factors in a complicated way, such as the amount of exposure, properties of a resist, the amount of defocusing, an optical characteristic of an underlying material, a developing process, etc. Consequently, the prior arts 3 and 4 are directed to techniques which are suitable to analyze carefully the pattern transfer capability of a single defect by performing a simulation including these complicated conditions, but are different from a technology for detecting defects of a large number of circuit patterns in a short period of time.
In the case where a large number of circuit patterns are examined in a short time, it will be a practical solution for this problem to thoroughly detect any defects having a possibility of being transferred as a detectable defect with a sensitivity as high as possible by means of a light source that is chosen only to detect defects, rather than performing a detection by applying an expensive, hard-to-handle exposure light source.
In this case, since UV light is employed to improve the resolution, visible light that deteriorates the resolution cannot be employed jointly as is the case of the prior arts 7 and 8.
Further, since it is essential to perform a rapid detecting, a minutely converged laser beam as in the prior art 9 cannot be used. In the UV light region, since a high-illuminance discharge lamp does not exist, a high-illuminance illumination by means of a laser is indispensable. However, as a result, when a laser beam is expanded to a whole field of view, an interference fringe pattern due to interference of the laser beam, a so-called speckle pattern, occurs and overshoot and undershoot occur in edge-portions of a circuit pattern, which make it impossible to obtain images.
Laser beams have excellent features as light sources. To use them in a way which will give their features full play, when a certain area is illuminated, generally the laser beams are scanned using some kind of scanning means.
For the scanning means, there are means capable of scanning by driving a mirror mechanically to change a reflection direction, means capable of scanning by applying an electric signal to an optical crystal to effect

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and equipment for detecting pattern defect does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and equipment for detecting pattern defect, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and equipment for detecting pattern defect will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3284791

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.