Optics: measuring and testing – By light interference – Having shearing
Reexamination Certificate
2002-06-25
2004-10-05
Font, Frank G. (Department: 2877)
Optics: measuring and testing
By light interference
Having shearing
C600S117000, C600S111000
Reexamination Certificate
active
06801325
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention is generally related to testing and calibrating optical devices, such as those used for minimally invasive surgery. In particular, the present invention is related to methods and devices for inspecting and calibrating a stereoscopic endoscope.
Minimally invasive medical techniques are aimed at reducing the amount of extraneous tissue which is damaged during diagnostic or surgical procedures, thereby reducing patient recovery time, discomfort, and deleterious side effects. The average length of a hospital stay for a standard surgery is significantly longer than the average length for the equivalent surgery performed in a minimally invasive surgical manner. Patient recovery times, patient discomfort, surgical side effects, and time away from work are also reduced with minimally invasive surgery.
The most common form of minimally invasive surgery may be endoscopy. Probably the most common form of endoscopy is laparoscopy, which is minimally invasive inspection and surgery inside the abdominal cavity. In standard laparoscopic surgery, a patient's abdomen is insufflated with gas, and cannula sleeves are passed through small (approximately ½ inch) incisions to provide entry ports for laparoscopic surgical instruments.
The laparoscopic surgical instruments generally include a laparoscope for viewing the surgical field, and working tools defining end effectors. To perform surgical procedures, the surgeon passes these working tools or instruments through cannula sleeves to a desired internal surgical site and manipulates the tools from outside the abdomen. The surgeon often monitors the procedure by means of a television monitor which displays an image of the surgical site via the laparoscopic camera. Similar endoscopic techniques are employed in, e.g., arthroscopy, retroperitoneoscopy, pelviscopy, nephroscopy, cystoscopy, cisternoscopy, sinoscopy, hysteroscopy, urethroscopy, and the like.
Minimally invasive telesurgical systems are now being developed to increase a surgeon's dexterity, so that the surgeon performs the surgical procedures on the patient by manipulating master control devices to control the motion of servomechanically operated instruments. In such a telesurgery system, the surgeon is again provided with an image of the surgical site via an endoscope. In both telesurgical and manual endoscopic procedures, the endoscope may optionally provide the surgeon with a stereoscopic image to increase the surgeon's ability to sense three-dimensional information regarding the tissue and procedure.
When imaging a target site with stereoscopic imaging optics, it is of particular importance to have very accurate adjustments between the stereo channels to provide accurate three dimensional information that can be matched between the two channels. If accurate matching is not accomplished, the stereo viewer will provide an inaccurate image and may cause eye strain for the user.
Consequently, it would be desirable to provide methods and devices which can inspect and calibrate a stereoscopic imaging device so as to be able to determine how well matched a first channel is compared with a second channel.
BRIEF SUMMARY OF THE INVENTION
The present invention relates generally to testing and calibrating stereoscopic imaging devices, such as a stereoscopic endoscope.
In particular, the present invention provides methods and devices for inspecting an optical endoscope assembly to ensure that a first and second channel are properly focused. The methods of the present invention can be used during quality control checks after manufacturing, by end users prior to performing surgery, or by technicians that service the endoscopes to ensure the that left and right channels of the stereoscopic endoscope are properly focused.
In some embodiments, the methods and devices of the present invention can make use of a generated fringe pattern that provides information about the diopter difference between two channels of the optical endoscopes. In exemplary configurations, the fringe pattern is generated by a shear plate that reflects a light beam exiting one of the channels of the endoscope and reflects the light beam onto an imaging device. The reflected light off of a front surface and a back surface of the shear plate create a constructive and destructive interference which lead to a series of light and dark fringes or a series of straight line segments. Measurement of the angle of the straight line segments, and a comparison of the angles from a first channel and a second channel of the endoscope provides information regarding the diopter difference between the first and second channels.
Once the diopter difference is measured, the user can determine if maintenance or replacement is needed. In general, if the diopter difference between the first channel and second channel is less than approximately ±0.2 diopters, the endoscope will not require maintenance or replacement. It should be appreciated however, that an acceptable diopter difference between other stereoscopic imaging channels will vary depending on the type of stereoscopic imaging device, the use of the stereoscopic device, and the like.
In one aspect, the present invention provides a method of calibrating a first channel and a second channel of a stereoscopic imaging device. The method comprises comparing an angle of a straight line segment of a fringe pattern obtained from the first channel with an angle of a straight line segment of a fringe pattern obtained from the second channel to determine an angle difference between the first channel and second channel. Thereafter, the angle difference can be used to calculate a diopter difference between the first and second channel.
In exemplary configurations, the fringe pattern of the first and second channels is obtained by delivering a laser beam through the channel and reflecting the laser beam after it exits the channel off of a shear plate so as to create the fringe pattern. Thereafter, the angle of the straight line segment of the fringe pattern of the channels can be measured.
In another aspect, the present invention provides a method for calibrating a stereoscopic endoscope. The method includes a step of providing a stereoscopic endoscope comprising a first channel and a second channel. The first channel and second channel each include a first end and a second end. A laser beam is delivered into the first ends of the of the first and/or second channel so as to emit light through at least one of the second ends of the first channel and second channel. The light that exits the second end of the first channel and the second channel can be reflected off of a fringe pattern device, (e.g., a shear plate). The fringe pattern device can create two beams of light that create a fringe pattern comprising straight line segments. An angle of the straight line segments for the first channel and second channel can be measured and the measured angle of the First channel and the second channel is calculated to determine a diopter difference between the first channel and the second channel.
In a further aspect, the present invention provides a method of calibrating a stereoscopic imaging device. The method includes a step of obtaining a fringe pattern for the first imaging channel. An angle of a straight line segment of the fringe pattern for the first imaging channel is calculated. A fringe pattern for the second imaging channel is obtained and an angle for a straight line segment of the fringe pattern for the second imaging channel is calculated. The angles of the first imaging channel and second imaging channel are compared and a diopter difference between the first imaging channel and the second imaging channel from the comparison of the angles is calculated.
In yet another aspect, the present invention provides a system for calibrating a stereoscopic imaging device. The system comprises a stereoscopic imaging device having a first channel that has a first end, a second end, and an optical assembly between the first end and the se
Farr Mina
Petersen Alan
Font Frank G.
Intuitive Surgical Inc.
Lyons Michael A.
Townsend and Townsend / and Crew LLP
LandOfFree
Method and devices for inspecting and calibrating of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and devices for inspecting and calibrating of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and devices for inspecting and calibrating of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3289145