Method and device to reduce needle insertion force

Surgery – Diagnostic testing – Sampling nonliquid body material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C600S567000, C600S568000, C606S167000

Reexamination Certificate

active

06626848

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates in general to devices and methods to reduce the insertion force of medical needles, biopsy needles, trocars, cutters and introducers into tissue, and more specifically, to needle insertion devices and methods employing reciprocating rotational motion.
BACKGROUND
The testing and histological analysis of tissue samples is common practice in the diagnosis and treatment of patients suspected of cancerous tumors, pre-malignant masses and other diseases or disorders. For the physician to arrive at a conclusive tissue diagnosis, an intact tissue characterization of the whole lesion or organ is required. Traditionally, open surgery was necessary to locate, identify and remove the lesion or obtain a tissue specimen. With the introduction of medical imaging equipment such as x-rays, fluoroscopy, computed tomography, ultrasound, nuclear medicine, and magnetic resonance imaging, identification of abnormalities within the body are possible. However, conclusive tissue diagnosis still requires obtaining an adequate tissue specimen utilizing open surgery or biopsy to characterize the histology of the lesion or organ.
Biopsy may be done using either an open or percutaneous technique. Open biopsy techniques are either an excisional biopsy to remove the entire mass or incisional biopsy to remove portions of the mass. Common percutaneous biopsy techniques include fine needle aspiration (FNA) or core biopsy.
Open surgical biopsies have many disadvantages. Procedure costs are high and can be traumatic or potentially disfiguring to the patient. The inherent risks of open surgery include mortality due to use of anesthesia and morbidity due to bleeding or infection. Endoscopic surgery has reduced the disfigurement, expense and associated risk of open surgery. However, endoscopic surgery presents drawbacks. It is highly site selective, requiring special surgical instruments. Therefore, less invasive alternatives such as FNA or Core biopsy are sought by the healthcare industry.
With FNA biopsy, individual cells are collected for cytological examination using a 20 to 26 gauge needle attached to a syringe. To begin the FNA procedure the needle is manually inserted though the skin to the target lesion or organ. Once the needle is inserted into the lesion or organ, a vacuum is created to aspirate cells into the lumen of the needle. The needle may be advanced and retracted several times to obtain cells from multiple locations within the lesion or organ.
U.S. Pat. No. 5,241,969 to Carson, et al. ('969) describes a fine needle aspiration device designed for use with standard needles and disposable syringes to obtain cells for the diagnosis of cancer and other pathological processes. The '969 patent discloses a fine needle having an internal diameter less than 0.5 millimeters is inserted through the skin into a palpable mass and a vacuum is applied to aspirate cells from the mass. The cells are cut free by moving the needle proximally and distally allowing the vacuum to aspirate the cells into the barrel of the syringe. The device includes an extended stabilizing ring to control the depth of needle penetration and to protect the user from needle stick accidents.
Core biopsies typically utilize 14 to 18 gauge needles or cannula to obtain a column-like sample of tissue. This technique will generally harvest a larger specimen or cylindrical cross-section of tissue often preserving the tissue architecture. Larger intact specimens from core biopsy are more suitable for histological evaluation. The type of biopsy selected by the physician depends on the circumstances with respect to the patient and upon the skill and degree of experience of the operator with FNA biopsy. No single technique is suitable for all cases. However, more core biopsy procedures are performed than FNA biopsy procedures because of higher diagnostic accuracy.
U.S. Pat. No. 5,251,641 to Xavier ('641) describes a biopsy needle for extracting human tissue specimens. In '641, the biopsy needle contains a rotating and axially removable inner cannula housed within an outer cannula in the form of a penetrating needle. The needle provides a conical piercing tip that is manually inserted into the skin through the mass by applying forward pressure. As the needle tip reaches the periphery of the specimen, the inner cannula is rotated counterclockwise 180-degrees to core a tissue sample through coextensive open channels in the inner and outer cannulas. The specimen is isolated by rotating the inner cannula clockwise 180-degrees to perform a transverse cut of the tissue and entrapping the tissue within an open distal chamber of the needle.
Despite the advantages of needle or core biopsy over open surgery, some inherent risks apply. Needle biopsy can cause post-surgical trauma to patients such as hematoma, bleeding, pneumothorax or hematuria. Wound infection is also a post-operative risk of needle or core biopsy. These complications usually relate to the needle size used for the procedure or random depth control of the needle tip during manual operation.
Both FNA and core biopsy devices have a number of disadvantages. FNA biopsy may occasionally provide an inadequate quantity or non-diagnostic cell sample. Therefore, the techniques and devices used for large core biopsy have a higher degree of acceptance than FNA devices and techniques. However, due to larger gauge needle size coupled with the need for higher insertion forces and acceleration of core biopsy, the procedure is more invasive, painful and traumatic. Additionally, core biopsy needles have been known to not penetrate dense tissue leading to increased risk of forming hematomas, swelling, and damage to surrounding tissue or structures. Due to the higher insertion forces of core biopsy needles, several devices are used to propel the needle with considerable force and speed in order to pierce the lesion and collect the specimen. These devices include biopsy guns, automated core biopsy devices (ACBD), manual and motorized devices capable of rotating needles.
U.S. Pat. No. 6,022,324 to Skinner ('324) describes a biopsy gun and needle for taking bone biopsy or soft tissue biopsy samples. In '324, the biopsy gun contains a firing mechanism for firing the biopsy needle; a cradle that securely holds the biopsy needle with an attached disposable syringe having a plunger; and a triggering mechanism. When the firing mechanism is actuated, the spring loaded cradle together with the biopsy needle move in forward stroke striking the target tissue organ causing the first tissue sample to be cored off into the needle. The syringe is then used to obtain a second tissue sample using a vacuum created when the plunger is maintained in a rearward position while the syringe is fired forward.
U.S. Pat. No. 4,667,684 to Leigh ('684) describes a biopsy device for single handed usage by the medical practitioner for obtaining a specimen of tissue, incorporating a reciprocal moving stylet within a cannula. The '684 patent discloses a pistol grip handle providing single hand insertion control of the stylet and cannula into the body along the means for guiding and controlling the reciprocal movement of the stylet and cannula. A specimen is obtained in the notch of the stylet by releasing the trigger mechanism thereby, allowing the spring loaded cannula to advance through the target tissue. A stop mechanism limits the cannula stroke in order to prevent inadvertent penetration of the stylet into the patient.
U.S. Pat. No. 6,083,176 to Terwilliger ('176) describes an automated biopsy needle handle that allows for the insertion of a needle set. In '176, the needle set is an integral unit and consists of an outer hollow cannula and an inner pointed tip stylet. In operation, the stylet and the cannula are inserted into a patient near the biopsy area. The stylet is manually advanced into the biopsy area until the operator engages the thumb activated, spring loaded, mechanism to pierce the tissue. The cannula is then triggered by firin

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and device to reduce needle insertion force does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and device to reduce needle insertion force, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device to reduce needle insertion force will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3048560

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.