Surgery – Diagnostic testing – Measuring anatomical characteristic or force applied to or...
Patent
1997-02-11
1998-12-22
Hindenburg, Max
Surgery
Diagnostic testing
Measuring anatomical characteristic or force applied to or...
A61B 510
Patent
active
058511938
DESCRIPTION:
BRIEF SUMMARY
FIELD OF THE INVENTION
The invention relates to a method and apparatus for simultaneous monitoring of the movements of different parts of an individual's body and possibly the vital functions (breathing, pulse etc.) measured from the movements of body parts. The invention further relates to a method and apparatus for ambulatory registering and storing of the movement of a part of an individual's body.
BACKGROUND OF THE INVENTION
Ambulatory measurement of human movements has been carried out for several years in the fields of sleep research, behavioral science, epidemiology, and neurology (van Hilten J. J. et al., Electroencephalography and Clinical Neurophysiology 1993; 89:359-362).
The term "ambulatory" in this context denotes the fact that the movements are registered and stored with an individual which is not tied to the analyzer with any wires or any other means that would restrict free motion and activity. Therefore, registering and recording of movements are not spatially nor temporally bound to the analysis of them.
Ambulatory measurement of motion has been performed so that an accelerometer (also called an actometer in this field of application) has been attached to man's limb. A conventional single plane or uniaxial motion transducer has been used as the accelerometer, which registers the motion with varying sensitivity depending on the direction of the motion. Incorporated with the accelerometer is a digital memory into which a sample of the digitized and preprocessed accelerometer signal has been stored at intervals of 0.375-60 seconds, normally at intervals of 30 seconds. The data stored in the memory are then read out in a computer and the signal is directly plotted on paper or it is processed using some mathematical method (Reddihough D et al., Developmental Medicine and Child Neurology, 1990; 32:902-909).
Commercially available accelerometers have been used for validation e.g. in sleep research. Clinically, ambulatory accelerometers distinguish well sleep and wakefulness from each other both in adults and children (Sadeh A. et al., Journal of Ambulatory Monitoring 1989; Vol.2, No.3:209-216; Sadeh A et al., Pediatrics 1991; 87:494-499; Hauri P. J. & Wiseby J., Sleep 1992; 15(4):293-301). However, current actometric methods have provided contradictory results in sleep detection in adults with insomnia (Chambers M. J., Sleep 1994;17(5):405-408). Accelerometry has been utilized for characterization of the quality of limb movements in some neurological disorders like cerebral palsy, Huntington's disease, and Friedreich's ataxy (Reddihough D et al., Developmental Medicine and Child Neurology, 1991; 33:578-584).
The best place to attach an accelerometer to a human has been searched in some studies (van Hilten, 1993 and Webster J. B., et al., Med. & Biol. Eng. & Comp. 1982;20:741-744), but generally the investigation method has dictated the site of attachment of the accelerometer on the human body. The most popular way is to attach the accelerometer at the wrist of the non-dominant hand (van Hilten, 1993) and, in small children, one leg is used as the site of attachment (Sadeh, 1991). In one ataxy study the accelerometers were attached to the dominant hand and to the leg on the same side, yet the data the different accelerometers registered had been analyzed separately (Fillyaw M. J. et al., Journal of Neurological Sciences 1989;92:17-36).
Many of the limb movements have become lateralized i.e. they appear on one or the other side. In sleep a changeover phenomenon takes place in this lateralization: the movements of the non-dominant side become dominant (Lauerma H. et al., Biol. Psychiatry 1992; 32:191-194). The significance of the phenomenon is not known and it has not been investigated much. One study tried to describe the phenomenon by using accelerometers attached to each limb (Violani C. et al., J. Sleep Res. 1994; 3:suppl. 1:268). This study used a long measuring interval (60 seconds) for the accelerometers and, due to this large interval, characterization of the lateralization phenomenon
REFERENCES:
patent: 4665928 (1987-05-01), Linial et al.
patent: 5143088 (1992-09-01), Marras et al.
patent: 5425750 (1995-06-01), Mobey
Arikka Harri
Lauerma Hannu
Markkula Juha
LandOfFree
Method and device for the simultaneous analysis of ambulatorily does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and device for the simultaneous analysis of ambulatorily , we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for the simultaneous analysis of ambulatorily will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2041276