Method and device for the processing of X-ray images

X-ray or gamma ray systems or devices – Electronic circuit – X-ray source power supply

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06647093

ABSTRACT:

The invention relates to a method for the processing of X-ray images and to a device for carrying out such a method.
Generally speaking, the signal-to-noise ratio, and hence the image quality, of fluoroscopic images of objects that have been acquired by means of X-rays is higher as the dose rate of the X-rays used is higher. For these reasons per se it would be desirable to use high dose rates for the acquisition of X-ray images; however, the radiation load for the object to be examined is thus increased. This holds notably for the formation of medical X-ray images of a patient for whom the radiation load is to be kept as small as possible for reasons of health. In particular in the case of fluoroscopic examinations, where images of a patient are formed and displayed on a display screen at a repetition rate of typically 30 images per second, the dose rate used should be limited to acceptable values. In order to derive a maximum amount of information from the acquired X-ray images nevertheless, therefore, as effective as possible algorithms are used for the image processing so as to suppress disturbing effects and achieve enhanced reproduction of the details of interest.
For example, U.S. Pat. No. 5,289,373 describes a method of recognizing and highlighting a guide wire on a fluoroscopic display screen, which guide wire emanates from a catheter introduced into the vascular system of a patient. Using the algorithm, an image region in which the guide wire should be situated is automatically inspected; first the pixels are determined in which local extremes of the grey values occur and after that it is determined which of those pixels yield a coherent line which could correspond to the guide wire.
The algorithm which is known from U.S. Pat. No. 5,289,373 does not require information concerning the detail “guide wire” to be displayed other than the general facts that the guide wire is formed by a shadow (extreme gray value) and that it must constitute a coherent line. Because objects other than the relevant guide wire may also satisfy these criteria, the algorithm involves the risk of identifying the wrong structure as the guide wire. Furthermore, it may occur that the algorithm cannot locate the guide wire, because it does not satisfy, by way of exception, the relevant criteria in the special image formed. In order to enhance the probability of correct detection of the guide wire by the algorithm, therefore, it is advantageous when the user can limit the region to be searched as much as possible.
Furthermore, for the recognition of given objects or structures there have been developed effective algorithms which utilize a predetermined pattern of the structure to be recognized. In an X-ray image the algorithms search for the positions which best match the predetermined pattern. Because of this procedure, such algorithms are also referred to as “pattern matching algorithms”. Such algorithms, however, have the drawback that they require a pattern of the desired detail which is not always available or not always available in the same form, that is, notably in the case of dynamic objects such as a guide wire which is moved through the body.
Considering the foregoing it was an object of the present invention to provide a method and a device for the processing of X-ray images which minimize the X-ray dose rate used and offer at the same time a suitable recognition performance and image enhancement for details of interest.
In conformity with the method for the processing of X-ray images, notably medical X-ray images acquired by fluoroscopy, at least one X-ray image is formed with a dose rate which is higher than the dose rates used to form the other images. Therefore, this image has a better signal-to-noise ratio or a higher image quality. This single image of higher image quality is then used as a basis for the algorithm for the processing of the other (previous and/or notably subsequent) images.
Overall the method in accordance with the invention can be performed while utilizing a smaller radiation load for the object to be examined; notably a patient who is subjected to fluoroscopy, because the vast majority of the X-ray images is formed with a low dose rate. Single images with a higher dose rate are formed only once or only a comparatively small number of times. Typically, such a single image is followed by several hundred or even a thousand normal X-ray images with a lower dose rate. The increased dose rate of the single images, therefore, is hardly of significance for the total radiation load. For the processing of all X-ray images, however, the single images present a significant improvement because of their high quality. Notably information which is not present in the normal images and which enables the relevant image processing algorithm to evaluate the normal X-ray images better can be derived from such single images.
Notably a pattern matching algorithm is used as the algorithm for the image processing; this algorithm utilizes at least one pattern of the image detail to be displayed, that is, the image detail of interest, for example, a guide wire. This pattern can then be derived from the single images acquired with a higher dose rate, so that a comparatively up-to-date and exact pattern is always available in dynamic situations also.
In conformity with a preferred version of the method, the pattern matching algorithm can additionally apply an automatic pattern recognition procedure so as to extract the pattern necessary for the processing of images with a lower dose rate from the single image with a higher dose rate. The pattern required, therefore, need not be entered in the algorithm with advance knowledge, but can be extracted by the algorithm itself from the presented images with a higher dose rate. This is advantageous notably in dynamic situations in which the shape of the pattern to be recognized changes continuously. An example in this respect is the tracking of a stent or of the guide wire of a catheter in medical X-ray fluoroscopy.
Alternatively, or additionally, the pattern matching algorithm may be provided with an input interface via which the pattern required for the processing of images with a lower dose rate can be entered after extraction of this pattern from an X-ray image with a higher dose rate. The external extraction of the pattern to be entered can be performed, for example, by the attending physician. Human knowledge and human capability of recognition can thus be introduced into the pattern matching algorithm for the benefit of the subsequent evaluations of “normal” X-ray images.
Furthermore, the method may be arranged so that the image processing of X-ray images with a lower dose rate is concentrated on regions of the image in which a detail to be reproduced was detected in the X-ray image with a higher dose rate. Using the single image of higher quality, a region of interest (ROI) can thus be defined automatically, or externally by a user, after which the further attention is focused on said region of interest. For various reasons the algorithms used for image processing can yield a better performance when they are limited to the regions which are really of interest. Not in the least a smaller region can be treated faster, thus leaving more time for more exact image processing in the case of real-time methods, for example, for the execution of a number of iterations. The reproduction of the region of interest can also be improved, for example, when the local histogram of the grey values is stretched across the display spectrum of the monitor used.
The instant at which a single image is formed with a higher dose rate is formed, can be externally specified by a user. For example, a physician can trigger the formation of such an image when he or she knows that the position of a catheter has changed significantly since the last single image. However, it is also possible to form an X-ray image with a higher dose rate automatically when a performance criterion which is a measure of the quality or reliability of the relevant image processing operation dro

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and device for the processing of X-ray images does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and device for the processing of X-ray images, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for the processing of X-ray images will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3136564

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.