Method and device for supplying steam to the drying section...

Drying and gas or vapor contact with solids – Process – Gas or vapor pressure is subatmospheric

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C060S677000, C034S124000

Reexamination Certificate

active

06782638

ABSTRACT:

TECHNICAL FIELD
The present invention concerns a method and a device for increasing the drying capacity of a pulp or paper machine.
TECHNICAL BACKGROUND
In a pulp or paper machine liquid pulp, so-called stock, is supplied to a head box which distributes the pulp in a thin layer onto a wire. The wire and its associated rolls and suction boxes are called a wire section. In the wire section, the pulp is drained and a web of pulp forms. After the wire section, the web passes a so-called press section, in which more water is removed by pressing. Subsequently, the web is passed on to a drying section.
In the drying section, the web is passed over a number of drying cylinders which are heated by means of steam. The web is usually held against the drying cylinders by means of dryer wires. The drying section is usually divided into a number of drying groups, where each drying group is made up of a number of drying cylinders and a wire. Another way of dividing the drying section is to group the drying cylinders in steam groups, in which each steam group is supplied with steam from the same pipe. The drying groups may coincide with the steam groups.
Steam is supplied to the papermaking machine from a principal steam conduit under constant pressure. It should be noted that all indications of pressure hereinafter relate to overpressure, unless otherwise stated. In most cases this steam, which originates from a steam boiler, has passed one or more turbines, which have converted some of the energy content of the steam into electric power. The steam produced by the boiler usually has a pressure of about 3.5-6 MPa, but pressures of up to about 10 MPa can be found. This steam is called high-pressure steam. From the turbine, steam having two different pressure levels is often conducted: intermediate-pressure steam with a pressure of about 1.0-1.3 MPa and low-pressure steam with a pressure of about 0.2-0.5 MPa. When making thermomechanical pulp (TMP), steam is circulated from the TMP refiner with a relatively low pressure, in the order of 0.15 MPa. The low-pressure steam is conducted to the steam users in the pulp or paper machine. The steam users can, for instance, be said drying cylinders.
Each drying cylinder has an inlet for steam and one or more discharge pipes (so-called siphons) or discharge shovels arranged in the cylinder. Each of the siphons, which can be stationary or rotating, has an opening located near the internal cylinder surface of the cylinder so that it can take up the condensate formed in the drying cylinder. If the pressure drop over the siphon is sufficient, the condensate will be pressed up through the siphon and discharged into one or more condensate vessels/steam separators. If the siphon is empty, steam flows out of the siphon and entrains newly formed condensate in droplet form, which is removed in the condensate vessel. The steam which is removed from a drying cylinder via the siphon is called residual steam (blow-through steam) and it has a lower pressure than the steam supplied to the drying cylinder due to the pressure drop in the drying cylinder, siphon and condensation vessel.
In some situations, it is desirable for economic reasons to reuse the residual steam with a view to using the heat still contained therein, in which case residual steam is sometimes recirculated to the same or one or several adjacent steam groups. However, more often than not this or these steam groups should be supplied with steam having a higher pressure than the pressure of the residual steam. To achieve this, some kind of compressor is installed, which increases the pressure of the recycled residual steam so that it attains the same pressure as the rest of the steam that is fed to the steam group in question. It is, for instance, possible to use a so-called steam ejector which utilises steam with a higher pressure, normally intermediate-pressure steam, to increase the pressure of the residual steam. If residual steam is to be returned, it is necessary to increase the pressure of the residual steam since steam with a certain pressure cannot flow by itself to a point with a higher pressure. The purpose of this return of residual steam is to reuse the heat which is still present in the residual steam after it has passed a first steam group. The energy loss and the investment cost due to the use of the compressor or the ejector are compared with the value of the residual heat of the residual steam when deciding whether to return the residual steam or not. In the above-described system for returning residual steam, the residual steam constitutes a minor part of the total amount of steam supplied to the steam group.
In the above-described prior-art system, there are occasions when the pulp or paper machine is “drying limited”, i.e. the capacity of the drying section restricts the speed of the web through the papermaking machine. These situations may, for instance, occur when it is desirable to increase the speed of the machine or obtain higher grammage, if the press dry solids content is reduced or if the output dry solids content of the drying section is to be increased. Often only one or a few steam groups limit the maximum production/drying capacity, e.g. the maximum speed. Which steam group or steam groups limit the speed depends on the reason why the machine is “drying limited”. A limited drying capacity can be avoided, for instance, by lengthening the drying section or by increasing the energy content of the supplied steam, which is usually performed by increasing the steam pressure.
To lengthen the drying section means a great investment, a great fall in production due to the stoppage during reconstruction and results in a machine having a drying section which in many cases is over-dimensioned. Often this solution is not justifiable from an economic point of view.
It is possible to increase the steam pressure of the system by installing a mechanical compressor which raises the pressure of the steam flow that passes the compressor, by increasing the pressure of the low-pressure steam in the entire system or by using the steam in the intermediate-pressure system for the drying groups. However, these solutions result in great costs. Since different drying groups (one or more) can limit the drying capacity of the machine in different cases, it is necessary to install compressors for each of the drying groups, which leads to great investment costs. Relatively high increases in pressure and large steam flows require large and expensive compressors. To increase the pressure of the low-pressure steam or use the intermediate-pressure steam also leads to great costs. A pressure increase of the low-pressure steam corresponds to a reduction of the power available to the turbine. Since the steam flows in a paper machine are often large, also a marginal pressure increase causes great differences in the electric power generated by the turbine, which in turn leads to great economic loss. To increase the pressure is a more or less permanent measure, whereas the limited drying capacity and thus the need of steam with increased pressure often occurs only in certain situations. In addition, the maximum permissible pressure in existing installations is often not much higher than the pressure in normal operation. Moreover, any pressure increase in the steam distribution system often makes it necessary to replace several components in the steam distribution system. Similar problems are associated with the use of intermediate-pressure steam, as the power available to the turbine decreases since the usable steam flow decreases, and in most cases the steam distribution system for intermediate-pressure steam is not dimensioned for the steam flows that are required if the intermediate-pressure steam is to be used for the drying groups.
Thus, a great drawback of prior-art drying systems in pulp and paper machines is that the known methods of increasing the drying capacity are much too expensive.
SUMMARY OF THE INVENTION
One object of the present invention is to define a solution to the above-described problems.
Ac

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and device for supplying steam to the drying section... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and device for supplying steam to the drying section..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for supplying steam to the drying section... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3293217

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.