Method and device for setting custom door travel limits on a...

Electricity: motive power systems – Plural diverse motor controls – Motor-reversing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C318S266000, C160S001000, C160S188000

Reexamination Certificate

active

06605910

ABSTRACT:

TECHNICAL FIELD
Generally, the present invention relates to a garage door operator system for use on a closure member moveable relative to a fixed member. More particularly, the present invention relates to an operator-controlled motor for controlling the operation of a closure member, such as a gate or door, between a closed position and an open position. More specifically, the present invention relates to an operator-controlled motor for a door or gate operator, which allows for simplified custom setting of closure member travel limits
BACKGROUND ART
For convenience purposes, it is well known to provide garage doors which utilize a motor to provide opening and closing movements of the door. Motors may also be coupled with other types of movable barriers such as gates, windows, retractable overhangs and the like. An operator is employed to control the motor and related functions with respect to the door. The operator receives command signals for the purpose of opening and closing the door from a wireless remote, from a wired wall station or other similar device. It is also known to provide safety devices that are connected to the operator for the purpose of detecting an obstruction so that the operator may then take corrective action with the motor to avoid entrapment of the obstruction.
A newer generation of operating systems have been found to provide improved sensitivity to extraneous forces applied to a door during its movement. One such device is disclosed in U.S. Pat. No. 6,161,438, which is assigned to the present assignee of this invention and which is incorporated herein by reference. Briefly, this patent discloses use of a potentiometer coupled to the door for determining a plurality of positional locations between the open and closed positions. A processor contained in the operator correlates the position of the door with an applied force for use in comparison to a predetermined threshold. If, during movement of the door, the applied force is outside the limits of the predetermined threshold, corrective action can be taken. With this increased sensitivity, safety standards allow use of the above operator system without an external safety system on anti-pinch doors.
These motorized garage door operators are known to have force adjustments that can be either mechanically or electronically controlled. This allows the installer, or the consumer, a way of adjusting the force that the operator exerts on the door. The amount of force to move the door will vary with the weight of the door, but can also vary as the environment changes and as the door becomes worn with age. Generally, the information necessary to properly set these limits is contained in the owner's/installation manual. Manual adjustment or selection is provided to allow the user or the installer of the door operator to set position limits which coincide with the fully open and fully closed positions of the door, and to set sensitivity limits which permit sufficient torque to move the door throughout its complete range in both opening and closing direction, but not enough torque to damage the door. A given model of operator may be intended for use on light doors, which might be damaged by too much torque, as well as heavy doors. It is important to match the operator to the door by using the sensitivity setting to achieve proper operation without damage to the door.
The sensitivity setting and the position limits are also used in obstruction detection for stopping the door to prevent damage by or to the obstruction. By using the maximum sensitivity, which is consistent with proper door operation, the damage by or to an obstruction can be minimized. It is a requirement that an obstruction detection feature be utilized during door movement except for the last inch of travel prior to the closed position. Thus the closed position limit is useful in identifying the door position above which obstruction detection is enabled.
U.S. Pat. No. 6,161,438 to Mullet, et al. discloses an internal entrapment system for a door movable by a repeatable force that includes a force-generating device for transferring the door between a first and a second position. A trolley arm connected between the force generating device and the door is continually strained during movement of the door. A sensor mounted on the trolley arm generates a signal representative of the strain applied to the trolley arm. A processor receives the strain signal for comparison to a predetermined threshold, when the strain signal exceeds the predetermined threshold, the processor at least stops the force-generating device. A potentiometer is coupled to the door for determining a plurality of positional locations of the door between the first and the second positions, wherein the processor correlates the position of the door with the strain signal for use in comparison to the predetermined threshold. A power supply provides electrical power to the force generating device, the sensor, the processor, and the potentiometer, and a decoder/amplifier circuit, which also receives electrical power from the power supply and receives the strain signal for conversion into a format acceptable for use by the processor.
U.S. Pat. No. 6,107,765 Fitzgibbon, et al. discloses a movable barrier operator that includes a wall control switch module having a learn switch thereon. The switch module is connectable to a control unit positioned in a head of a garage movable barrier operator. The head unit also contains an electric motor, which is connected to a transmission for opening and closing a movable barrier such as a garage door. The switch module includes a plurality of switches coupled to capacitors which, when closed, have varying charge and discharge times to enable which switch has been closed. The control unit includes an automatic force incrementing system for adjusting the maximal opening and closing force to be placed upon the movable barrier during a learn operation. Likewise, end of travel limits can also be set during a learn operation upon installation of the unit. The movable barrier operator also includes an ambient temperature sensor which is used to derive a motor temperature signal, which motor temperature signal is measured and is used to inhibit motor operation when further motor operation exceeds or is about to exceed set point temperature limits.
U.S. Pat. No. 6,097,166 Fitzgibbon, et al. discloses a movable barrier operator which includes a wall control switch module having a learn switch thereon. The switch module is connectable to a control unit positioned in a head of a garage movable barrier operator. The head unit also contains an electric motor, which is connected to a transmission for opening and closing a movable barrier such as a garage door. The switch module includes a plurality of switches coupled to capacitors which, when closed, have varying charge and discharge times to enable which switch has been closed. The control unit includes an automatic force incrementing system for adjusting the maximal opening and closing force to be placed upon the movable barrier during a learn operation. Likewise, end of travel limits can also be set during a learn operation upon installation of the unit. The movable barrier operator also includes an ambient temperature sensor which is used to derive a motor temperature signal, which motor temperature signal is measured and is used to inhibit motor operation when further motor operation exceeds or is about to exceed set point temperature limits.
U.S. Pat. No. 6,051,947 Lhotak, et al. discloses an operator for opening and closing movable barriers such as garage doors comprising a pass point limit system, which is a component of an operating head. The operator is responsive to remote control from a wall panel or other location remote from the operating head to enable setting and adjustment of door travel limits from a remote location, without requiring installation of limit switches separate from the operating head.
U.S. Pat. No. 5,278,480 Murray discloses a garage door operator that has a microcomputer bas

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and device for setting custom door travel limits on a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and device for setting custom door travel limits on a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for setting custom door travel limits on a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3113059

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.