Method and device for reducing vibrations

Brakes – Inertia of damping mass dissipates motion – Resiliently supported damping mass

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C318S611000

Reexamination Certificate

active

06427815

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a device for reducing the vibrations of a structure along a vibration propagation line, in particular in a helicopter, as well as to a method for reducing the vibrations of a structure.
DESCRIPTION OF THE RELATED ART
Cellular structures in helicopters are subject to considerable vibrations. These are caused for example by rotation of the main rotor and extend, inter alia, along an axis of vibration propagation inside the cabin. They are responsible, in particular, for cabin vibrations arising at the pilot's seat, which are distracting and uncomfortable for the pilot.
Vibration absorbers are conventionally provided at the main rotor to reduce the vibrations, these being capable of transmitting static forces but filtering out vibrations. A vibration absorber of this type is known from EP 0519786 B1. This consists substantially of two coaxially arranged housings, between which resilient restoring means is arranged, which connects the two housings together.
The known vibration absorber has the problem of markedly increasing the total weight of the helicopter. In addition, vibration absorbers of this type are unable to operate optimally owing to the constantly changing rotational speed of the main rotor, since the known vibration absorbers are unable to adapt their vibration-absorbing abilities quickly enough to the varying vibration times. In addition, the structure is very complex.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to provide a device for reducing vibration in a structure, which device is of simple construction and with which it is possible effectively to reduce vibrations having constantly varying vibration times. In addition, the device is designed to be easily attachable at the location to be kept free of vibrations, e. g. the pilot's seat in the cabin.
To achieve this object, the invention provides a device for reducing the vibrations of a structure along a vibration propagation line, in particular in a helicopter, in which two vibrating members of masses m
1
and m
2
are located at or near the ends of a spring, wherein the spring and/or the vibrating members are so constructed that the resonance characteristics may be variably adjusted within a range decisive for the reduction of vibrations.
Devices according to the invention can reduce the vibrations arising within a broad frequency spectrum and can be constructed to adapt automatically and rapidly to constantly changing frequencies. The device can be made compact and thus suitable for confined spaces, and may in particular be used in a helicopter, where it may easily be mounted within the cabin, e. g. in the vicinity of the pilot's seat, in order to keep this area free of vibrations. The structure in question can then be constituted by the floor in the vicinity of the seat, or even the seat or seat mounting itself. The spring can be mounted on the structure either directly or indirectly, by fixing it in a housing which in turn is fixed to the structure. The fixing can be by way of an interference fit, for example.
The assembly preferably includes means provided on the vibrating members and in the center, i.e. at the base point, of the spring, for adjusting the resonance characteristics of the device, said means being capable of sensing the movement of these components relative to the surrounding environment. Depending on the phase difference between the vibration of the vibrating member of mass m
1
and the vibration of the base point on the one hand and the phase difference between the vibration of the vibrating member of mass m
2
and the base point on the other, correcting variables derived therefrom modify the resonance characteristics of the spring/mass system until the absorption of the vibrations by the device, i.e. the reduction of the vibrations of the structure, reaches its maximum.
To determine the phase difference between the movements of the vibrating members and the movement of the base point, the device preferably comprises phase detectors having a control output, which, with the correcting variables output at that point, varies the resonance characteristics as a function of the phase differences detected by the detectors. Thus, a control circuit is formed by means of the phase detectors which senses the vibrations of the spring/mass system at the various positions using the means for measuring the movement, compares them in the phase detectors and modifies the resonance characteristics by means of the control outputs until the reduction of the vibrations of the structure reaches an optimum level. The phase detectors are advantageously multiplexers with control outputs.
It is also preferable for a comparison between the amplitude of the movements of the vibrating members to be carried out, in order to modify the resonance characteristics of the spring/mass system as a function of the amplitude difference between the movements. The amplitude differences between the two vibrating members are reduced to a specified range.
The movement-measuring means preferably take the form of acceleration sensors. However, it is perfectly possible for other detectors to be used, with which it is possible to sense the accelerated movements of the vibrating members, i.e. the vibrations. In the event of simultaneous measurement of the movements of the vibrating members for determining the phase difference and measurement of the movement of the vibrating members for determining the amplitude difference, only one means is attached to each vibrating member for movement measurement, meaning that only one acceleration sensor is provided for both measurements and the signals of the acceleration sensors are used both for phase comparison and for amplitude comparison.
Amplitude controllers having a control output are preferably used in the device to determine the amplitude difference between the movements of the two vibrating members of the masses m
1
and m
2
. The correcting variables emitted via the output as a function of the amplitude difference detected by the amplitude controller then modify the resonance characteristics of the spring/mass system. The control circuit formed here by means of the amplitude controller senses the movements of the vibrating members and compares the amplitudes of the vibrations with a set value or set value interval, whereupon the control output of the amplitude controller modifies the resonance characteristics until the measured amplitude difference reaches the specified value or lies within the specified interval. The amplitude controller is advantageously a comparator with control output.
For simultaneous adjustment of the resonance characteristics by means of the phase difference between the movements of the vibrating members and the base point of the spring and adjustment via the amplitude difference between the movements of the vibrating members, the device preferably includes a logic component which receives the correcting variables from the two control circuits and combines them to form overall correcting variables for modifying the resonance characteristics.
Modification of the resonance characteristics of the spring/mass system may be effected by modifications to the spring or the spring material, or the clamping of the spring, in order to have a direct effect on or to change the spring constant and thus the resonance characteristics of the spring. However, it is advantageous for at least mass components &Dgr;m
1
and &Dgr;m
2
of the vibrating members of the masses m
1
and m
2
to be mounted so as to be displaceable along the axis of vibration propagation. This displacement of the mass centers of the vibrating members has the effect of modifying the vibration characteristics of the spring/mass system of the device, which results in a change to the resonance characteristics. It is of course also possible to displace the entire vibrating members of the masses m
1
and m
2
along the axis of vibration propagation.
Any desired means may contribute to the displacement of the mass components

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and device for reducing vibrations does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and device for reducing vibrations, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for reducing vibrations will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2911138

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.