Method and device for rapid cutting of a workpiece from a...

Electric heating – Metal heating – By arc

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C219S121670

Reexamination Certificate

active

06800831

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a method and a device for the rapid cutting of a workpiece made from brittle material, in particular made from glass, glass-ceramic or ceramic, by means of laser beams along a cutting line of any desired contour. A preferred application is he rapid cutting of flat glass.
2. Description of the Related Art
Conventional methods for cutting glass are based on using a diamond or a small cutting wheel first of all to produce a score in the glass, in order for the glass then to be broken along the weakened line generated in this way by the application of an external mechanical force. A drawback of these methods is that the score causes particles (splinters) to be detached from the surface, and these particles can be deposited on the glass, where they may, for example, cause scratches. Also, chips may form at the cut edge, leading to an uneven glass edge. Furthermore, the microcracks in the cut edge which form during the scoring operation lead to a reduced mechanical load-bearing capacity, i.e. to an increased risk of breaking.
One approach aimed at avoiding both splinters and chips and microcracks is to separate glass using thermally generated stress. In this case, a heat source which is directed onto the glass is moved at a fixed velocity relative to the glass, and in this way generates a thermal stress which is so high that the glass forms cracks. The required property of the heat source of being able to position the thermal energy locally, i.e. with an accuracy of better than one millimeter, which corresponds to typical cutting accuracy, is satisfied by infrared radiators, special gas burners, and in particular lasers. On account of their good focussing properties, good controllability of the power and the possibility of beam shaping and therefore intensity distribution, lasers have proven successful and achieved widespread use on glass.
This laser-beam cutting method, which induces a thermomechanical stress to above the breaking strength of the material by local heating by means of the focussed laser beam in combination with external cooling, has been disclosed by a number of documents.
The method which is known from WO 93/20015 uses a laser beam of elliptical shape with a trailing cooling spot. This method achieves good results in straight-line scoring of nonmetallic plate material, but is unable to ensure high-quality and highly accurate scoring along a curved contour. Moreover, the known method does not achieve a very stable cutting profile at a high radiation density and high cutting speeds.
To optimize the heating conditions of the material along the cutting line, according to WO 96/20062 the heating is effected by means of a bundle of heating beams, in the cross section of which passing through the center of the bundle the density of the radiation power is distributed so that it decreases from the periphery toward the center. An elliptical beam bundle is used, resulting in temperature distribution in the form of an elliptical ring.
The drawbacks of these known methods are avoided by the method described in EP 0 872 303 A2, which provides a focal spot which has a U-shaped or V-shaped contour which opens out in the cutting direction and a characteristic intensity distribution. This method has proven successful in practice when carrying out straight cuts. It is possible to cut through even large workpiece thicknesses cleanly. When carrying out free-form cuts, i.e. cuts with any desired contour, possibly including a curved contour, it is necessary to generate a curved U-shaped or V-shaped intensity distribution which is matched to the contour of the cutting line and for the contour to be tracked, including the subsequent cooling. This requires in particular coupling of the scanner device which generates the focal spot with a path control unit, which entails a not inconsiderable control and adjustment outlay.
DE 44 11 037 C2 has disclosed a laser-beam cutting method for cutting hollow glasses which operates with a stationary laser beam which is sharply focussed to form a spot and generates a thermal stress zone around the rotating hollow glass. Then, cooling is effected along the stress zone which has been introduced over the entire periphery of the hollow glass using a mist of atomized water which is blown out of a nozzle, so that the hollow glass edge is severed when used in conjunction with a mechanically or thermally generated starting crack.
DE 43 05 107 A1 has disclosed a laser-beam cutting method in which the laser beam is shaped in such a way that its beam cross section, on the surface of the workpiece, is elongate in shape, in which method the ratio of length and width of the impinging beam cross section can be set by means of a diaphragm in the laser-beam path.
Furthermore, methods for cutting glass by means of a plurality of laser beams are known.
In the method described in DE-B 1 244 436, inter alia to produce shaped edges, more than one laser beam is applied to the same cut during the laser cutting, and the individual laser beams form different angles with the glass surface. The corresponding U.S. Pat. No. 3,453,097 describes a method for cutting glass by means of a plurality of laser beams guided in coupled form onto the cutting line.
For a very wide range of reasons, the first laser-beam cutting method described has proven to be the superior method and has become widely accepted in practice. The invention is based on this method. The cutting capacity which can be achieved by the first method described and the usability of the method are governed in particular by the effective induction of a thermomechanical stress along the cutting line in the workpiece which is to be cut, the intensity distribution in the laser beam and the type of cooling. The rapid and, at the same time, effective induction of a thermomechanical stress along the cutting line which is required for cutting is only ensured to an insufficient extent in the known methods. On account of the ineffective induction of a thermomechanical stress, limits are imposed on the demand for ever higher cutting speeds.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a method and a device for cutting a workpiece made from brittle material, in particular made from glass, glass-ceramic or ceramic, by means of laser beams along a predetermined cutting line of any desired contour, so that a high cutting accuracy and faithfulness to contours and rapid cutting are possible without the formation of microcracks, chips or splinters.
This object is attained, according to the invention, by a method for rapid cutting of a workpiece made of brittle material along a predetermined cutting line of any desired shape by means of laser beams, which comprises:
a) generating the laser beams;
b) focusing the laser beams onto the cutting line to form focused laser beams on the cutting line;
c) guiding the focused laser beams one behind the other along the cutting line without melting the brittle material;
c) shaping the respective laser beams so that the respective beam cross-sections forming corresponding focal spots on a surface of the workpiece which is to be cut have predetermined shapes and intensity distributions;
d) moving the workpiece and the laser beams relative to each other so that the focal spots move along the cutting line and the focused laser beams induce a thermo-mechanical stress in the brittle material; and
e) blowing a fluid cooling medium onto a heated cutting line section of the workpiece for subsequent cooling so as to increase the thermo-mechanical stress in the brittle material above a breaking strength of the brittle material.
Clean cut edges are achieved, without any microcracks, chips or splinters.
The method according tothe invention allows rapid and effective inducing of a thermomechanical stress along a cutting line of any desired contour. Surprisingly, it has been found that high laser powers can be introduced into the workpiece to be cut without the workpiece melting. At the same time, it was possi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and device for rapid cutting of a workpiece from a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and device for rapid cutting of a workpiece from a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for rapid cutting of a workpiece from a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3290882

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.