Method and device for producing polyurethanes containing...

Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – At least one aryl ring which is part of a fused or bridged...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C366S139000, C366S151100, C366S151200, C366S151100, C366S156100, C366S160200, C366S165400, C366S176100, C366S181800, C366S182100, C422S133000, C523S347000, C523S348000, C524S589000, C524S590000, C524S495000, C524S496000, C528S044000, C528S048000, C528S085000

Reexamination Certificate

active

06353053

ABSTRACT:

BACKGROUND OF THE INVENTION
The production of polyurethanes containing filling material is generally carried out as follows: the components of the polyisocyanate polyaddition mixture and the filling materials are fed to the mixing head of a stirring apparatus, are there mixed and are then introduced into the open or closed mould or into the continuously moving mould formed by a double conveyor belt installation, the reactive mixture optionally being cured after closure of the mould and the moulded article subsequently being removed from the mould. In that operation, the filling material can be pre-mixed with the polyol component. It has also been proposed to pre-mix the liquid components of the polyisocyanate polyaddition reaction mixture in a counterflow injection mixing head and subsequently mix the filling materials with the reactive mixture in a friction mixer.
Depending on the properties of the solid to be used, a number of problems can occur with those processes. Coarse-grained filling materials having a particle size of, for example more than 0.55 mm or mechanically sensitive filling materials, such as, for example, encapsulated filling materials, can be destroyed mechanically in the above-described stirring units, such as stirring apparatus mixing heads or friction mixers, on account of the high shearing forces. Filling materials that have a tendency to form a sediment can become deposited in the supply pipes even in the case of short stoppages in production once they have been mixed with one of the reaction components. Moreover, they tend to form a sediment in the reacting polyisocyanate polyaddition mixture and to collect in the lower portion of the mould.
There are, for example, a number of proposals for using expandable graphite for flameproofing polyurethanes, especially polyurethane foam; see, for example, U.S. Pat. No. 3,574,644, DE-A 24 28 307, EP-A 192 888 and EP-A 337 228.
There are suitable as expanded graphite, for example, known inclusion compounds of SO
x
, NO
x
, halogen and/or strong acids in graphite. They are also known as graphite salts. Preference is given to expanded graphites which yield SO
2
, SO
3
, NO and/or NO
2
at temperatures of, for example, from 120 to 350° C., with expansion. The expanded graphite may be, for example, in the form of lamellae having a maximum diameter in the range of from 0.1 to 5 mm. The diameter is preferably in the range of from 0.5 to 3 mm. Expanded graphites of that type are commercially available.
Based on the ready-to-use; flame-resistant insulating element, from 1 to 50 wt. %, for example, of expanded graphite may be contained therein. The content of expanded graphite is preferably from 2 to 30 wt. %, especially from 2 to 20 wt. %. The effect of the expanded graphite as a flame-protecting agent is tied to the size of the graphite particles. Expanded graphite particles which have been ground during the process of incorporation into a binder make only a very limited contribution to the flameproofing. Conventional processes for incorporating filling materials into polyurethane reactive mixtures lead to a considerable reduction in the particle size, which is detrimental to the flameproofing. Especially in the production of polyurethane foam containing expanded graphite, a high degree of sedimentation of the expanded graphite through the as yet uncured foam is also observed. Accordingly, insulating boards of high-resistance polyurethane foam which have been flame-protected by means of expanded graphite exhibit increased contents of expanded graphite on the underside (based on their position in the double conveyor belt installation), while the upper side is deficient in expanded graphite.
SUMMARY OF THE INVENTION
None of the mentioned publications dealing with the flameproofing of polyurethane foam gives an indication of how the expanded graphite is to be incorporated into the foam. Accordingly, expanded graphite has hitherto been unable to gain acceptance as a flame-protecting agent in polyurethane insulating boards.
The present invention provides, on the one hand, a process and corresponding devices for incorporating expanded graphite in a gentle manner into a polyurethane reactive mixture and, on the other hand, processes and corresponding means for reducing or preventing sedimentation of the expanded graphite in the liquid foam.
The invention is not, however, limited to the incorporation of expanded graphite into polyurethane, but can be used generally for incorporating mechanically sensitive filling materials into polyurethanes. Such filling materials are, for example, short glass fibres, which generally break during incorporation and hence lose some of their reinforcing potential.
Another example is the incorporation of iron oxide pigments in the production of insulating materials for screening electromagnetic radiation.
The present invention provides, on the one hand, a mixing head for mixing a polyol component containing filling material with an isocyanate component in order to produce a polyisocyanate polyaddition reaction mixture, containing a mixing chamber having an inlet opening for the polyol component containing filling material and having one or more inlet openings for the isocyanate component, the cross-sectional area of the inlet opening for the polyol component being from 10 to 100 times, preferably from 30 to 100 times, especially at least 50 times, greater than the sum of the cross-sectional areas of the inlet openings for the isocyanate component. According to the invention, the mixing chamber contains no movable or fixed turbulence-producing components.
The pipe supplying the polyol component containing filling material to the mixing chamber, the mixing chamber itself and the subsequent pipe to the mixture outlet preferably have substantially the same diameter, the mixing chamber simply being a region which is not sharply defined in respect of its extent in the-direction of flow, into which one or more inlet openings for the isocyanate component open.
From two to four inlet openings for the isocyanate component are preferably provided. The inlet openings for the isocyanate component can be arranged in a plane transverse to the direction of flow through the mixing chamber. Where a plurality of inlet openings for the isocyanate component are provided, however, they are preferably arranged in several successive planes.
The pressure of the polyol component containing filling material on introduction into the mixing chamber is preferably from 0.2 to 2 bar, especially from 1 to 1.5 bar. The isocyanate component can advantageously be injected into the mixing chamber at a pressure of from 50 to 250 bar, preferably over 100 bar.
The speed of the incoming polyol component is to be at least 1 m/s, preferably from 2 to 5 m/s. The speed of flow of the isocyanate component is preferably from 80 to 150 m/s.
The present invention also provides a process for mixing a polyol component containing filling material with an isocyanate component, which process is characterised in that the isocyanate component is injected into the polyol component containing filling material, the polyol component being at a pressure of from 0.2 to 2 bar and the pressure of the isocyanate component prior to injection being at least 50 bar, preferably from 100 to 250 bar. The isocyanate component is preferably injected into the polyol component at an angle of at least 90° to the direction of flow of the polyol component.
The polyol component containing filling material is preferably produced as follows:
The filling material is metered in via metering screws, proportioning belt weighers or shaking conveyors and is fed to a mixing screw for mixing with-the polyol.
The gradient, the pitch of the wall, the length and the speed of rotation are preferably so matched to one another that the friction and the build up of pressure in the screw are minimised. A preferred embodiment of the mixing screw has a continuous conveyor screw (single blade screw) which leaves a gap relative to the screw housing which is larger than the particle size of the fi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and device for producing polyurethanes containing... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and device for producing polyurethanes containing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for producing polyurethanes containing... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2855368

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.