Food or edible material: processes – compositions – and products – Processes – Heating above ambient temperature
Reexamination Certificate
1999-04-07
2001-07-03
Cano, Milton (Department: 1761)
Food or edible material: processes, compositions, and products
Processes
Heating above ambient temperature
C426S501000, C426S514000, C099S353000, C099S450100, C099S450200, C425S335000, C425S363000
Reexamination Certificate
active
06254916
ABSTRACT:
TECHNICAL FIELD
The invention relates to the production of edible, crunchy and brittle wafer rolls made of endless wafer strips plastically deformable when hot, which are wound over a mandrel into an endless, tubular hollow body and are then cut into separate measured wafer rolls, which assume a crunchy, brittle consistency while cooling.
STATE OF THE ART
When producing wafer rolls, a fluid sugar-containing wafer dough is continuously baked in a baking machine on a hot revolving baking surface which rotates continuously in the same direction about a horizontal axis into an endless wafer strip which is plastically deformable when hot and which adheres with its bottom side to the hot baking surface. The baked wafer strip is removed from the baking surface in the direction of its run, at a predetermined removal level and is wound helically overlapping in a lower-lying winding device into an endless, plastically deformable tubular hollow body, from which the individual wafer roll are separated, which during cooling assume their typical crunchy and brittle consistency. The baked wafer strip is removed from the passing baking surface by a horizontal removal blade arranged perpendicularly to the running direction of the baking surface.
The removed wafer strip is wound in a winding device arranged obliquely with respect to its path or travel direction is as known from Austrian Patent 314 960, in a helically overlapping manner, into an endless, plastically deformable tubular hollow body. This winding device provides two winding members rotating in opposite directions about mutually parallel rotation axes, which between them form a winding gap. One winding member is a mandrel about which the wafer strip is wound helically overlapping, forming a tubular hollow body. The other winding member is a roller which obliquely feeds the baked wafer strip to the mandrel or the winding gap and which during winding presses the wafer strip against the mandrel or against the forming hollow body. At its periphery the roller has a transport threading by means of which the tubular hollow body is moved in its longitudinal direction together with the rotating mandrel. The inclined position of the winding gap with respect to the travel direction of the wafer strip, on the one hand, and the rotational speed of the roller provided with the threading, on the other hand, determine the degree of the mutual overlapping of the individual turns of the wafer strip during the winding of the tubular hollow body and thereby the number of the wafer strip layers lying on top of one another, or the thickness of the tubular hollow body formed by the overlapping wafer strip layers.
Depending on the baking machine for the production of the endless wafer strip, the wafer dough is either poured onto an upwards facing hot revolving baking surface, or supplied to the hot revolving baking surface at a downwards facing part by means of a guide plate, whose upper part drops off towards the baking surface and forms together with the latter a wedge-shaped gap filled with wafer dough and from which the wafer dough is continuously drawn off by the hot revolving baking surface. In both cases on the hot baking surface an endless strip of wafer dough is formed, which adheres with its bottom side to the baking surface, and during the revolution of the baking surface is baked into a plastically deformable wafer strip.
Different parameters are involved in setting the width and the thickness of the wafer strip, depending on the baking machine. One parameter is the surface configuration of the revolving baking surface, which can be totally smooth or provided with a single depression receiving the dough strip. Another parameter is the viscosity of the fluid wafer dough, mainly prepared from flour, sugar and water, whose viscosity is varied mainly through the proportion of water. A further parameter is the manner in which the flowable wafer dough is applied to the baking surface. When the application takes place via a guide plate, the wedge-shaped gap between the baking surface and the guide plate and the lateral margins of the guide plate can be involved in controlling the width and the thickness of the baked wafer strip. When the dough is directly poured onto the revolving baking surface, one or more spray jets directed towards the baking surface can be used. The width and thickness of the baked wafer strip can be influenced by the width of a single stationary spray jet, or by the spatial arrangement of several stationary spray jets along the baking surface, or by the motion of one or more spray jets with respect to the baking surface.
In order to be able to start the production of the wafer rolls, first a flowable dough is applied to the hot revolving baking surface, which has already been heated to a baking temperature between 130 and 220 degrees Celsius, to form a dough strip which during the revolution of the baking surface is baked into a plastically deformable wafer strip, whereby the initial strip portion reaches the stationary removal blade and over that is allowed to fall to a lower level, until the formed initial portion of the baked wafer strip is long enough to be manually seized by an operator. The long initial portion of the dough strip is then manually wrapped once about the rotating mandrel and introduced into the winding gap of the winding device. This procedure is executed by the operator very quickly and with protective gloves, in order to avoid injury due to a possible contact with the very hot parts of the baking machine, such as the baking surface or the removal blade or the hot parts of the winding device, such as the rotating mandrel or the roller rotating in the opposite direction.
In the known baking devices, all around the revolving baking surface or between the revolving baking surface and the winding device, sufficient space is available to allow for the initial portion of the baked wafer strip to be seized by hand and wrapped about the rotating mandrel. However the problem of handling a hot wafer strip in a space surrounded by hot, rapidly rolling parts is still there.
In order to increase the output of the baking machine for the continuous production of edible wafer rolls, on the outer shell surface of a heated baking drum rotating about a horizontal rotation axis up to six wafer strips are simultaneously baked next to each other, and then wound helically overlapping, in six winding devices arranged next to one another, into six endless tubular hollow bodies, each of which is separated into wafer rolls. In these baking machines, only very little room is left between the winding devices with their rapidly rotating winding members or between the winding devices and the hot rotating baking drum, in order to allow for each baked wafer strip to be seized by hand and wrapped around the rotating mandrel of the respective winding device.
OBJECT OF THE INVENTION
It is the object of the invention to provide a method of and an apparatus for the production of edible wafer rolls whereby the handling of the hot wafer strip in a space surrounded by hot parts is eliminated.
SUMMARY OF THE INVENTION
In order to achieve this object, a method for the continuous production of edible wafer rolls is proposed, whereby on an endlessly revolving baking surface, from a flowable, sugar-containing wafer dough an endless wafer strip is continuously baked, which is plastically deformable when hot, and which is removed from the hot baking surface at a predetermined removal level over a downwardly sloping removal blade, and below the removal level, in a winding gap obliquely arranged with respect to the path of the wafer strip, between two winding members rotating in opposite directions, is wound in a helically overlapping manner around a winding member designed as a mandrel, to form an endless tubular hollow body. The latter is separated into individual wafer rolls with a measured length, which during cooling assume a crunchy, brittle consistency.
According to the invention at the start of each winding process the initial portion of the baked
Haas Johann
Haas, sen. Franz
Jiraschek Stefan
Cano Milton
Dubno Herbert
Franz Haas Waffelmaschinen-Industrie Aktiengesellschaft
Madsen Robert
LandOfFree
Method and device for producing edible wafer rolls does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and device for producing edible wafer rolls, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for producing edible wafer rolls will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2441863