Fluid sprinkling – spraying – and diffusing – Rigid fluid confining distributor – Orifice in separable disc or plate
Utility Patent
1999-02-03
2001-01-02
Morris, Lesley D. (Department: 3752)
Fluid sprinkling, spraying, and diffusing
Rigid fluid confining distributor
Orifice in separable disc or plate
C239S600000, C029S017300
Utility Patent
active
06168099
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an orifice disk for an injection valve.
BACKGROUND INFORMATION
U.S. Pat. No. 4,854,024 describes a method for manufacturing a multi-stream orifice plate for a fuel injection valve in which a thin metal stock is used. Orifices, which can be further processed by subsequent pressing or coining, are introduced into the stock by punching. Circular orifice plates are then punched out from the stock around the orifices, thus yielding the orifice plates in isolated form. U.S. Pat. No. 4,854,024 and U.S. Pat. No. 4,923,169 describes the use of a maximum of two such orifice plates manufactured in this fashion in a sandwiched manner on a fuel injection valve. For this purpose, the two metal layers of an orifice plate of this kind, present independently of one another, are clamped one on top of another between a valve seat element and a support ring that is to be attached in positive fashion. Each individual metal layer of a two-layer orifice plate of this kind is thus manufactured entirely separately, so that a multi-layer orifice plate is created on the injection valve only in the directly installed state. Lastly, the support ring must again be mounted in the valve seat support by crimping or another fitting method, since it alone does not result in any immobilization of the orifice plate.
U.S. Pat. No. 5,570,841 describes orifice disks, comprising several layers, which are used in fuel injection valves. The two or four layers of the orifice disks are again manufactured separately from stainless steel or silicon, and have openings and channels serving as opening geometries, which are shaped by electrodischarge machining, electrodeposition, etching, precision punching, or micromachining. The layer provided farthest away from the valve seat always possesses an opening geometry which imparts a swirl component to the medium flowing through. The layers, manufactured independently from one another, form the multi-layer sandwich-like orifice disk only when located directly on the injection valve, since the individual layers are clamped in, stacked one above another, between the valve seat element and a support disk.
U.S. Pat. No. 5,484,108, describes orifice disk elements for fuel injection valves which comprise two or three thin layers of a suitable metal, for example a stainless steel. Here again, the layers of the orifice disk element are manufactured separately from one another, being shaped in such a way that, resting in sandwich fashion one above another, they cause the creation of at least one cavity-forming chamber in the region of their opening geometries. In the same fashion as in the documents already mentioned above, the individual layers of the orifice disk element are clamped between the valve seat element and a support member.
U.S. Pat. No. 5,350,119 describes a fuel injection valve which has a clad orifice disk element. The orifice disk element is manufactured from a strip of a refractory metal such as molybdenum, and a coating, resting thereupon, of a soft metal such as copper. The flat layers of the orifice disk element are retained on the valve seat element by crimping over the valve seat support.
SUMMARY OF THE INVENTION
The methods according to the present invention for manufacturing an orifice disk, have the advantage that by applying them it is possible, in a simple manner and very effectively, to manufacture multi-layer metal orifice disks economically and in very large volumes (assembly-line production). In particularly advantageous fashion, a simple and economical positional allocation of individual metal foils or of the metal layers of the later orifice disks is achieved by auxiliary openings, so that production reliability is very high. The positional allocation of the metal foils can advantageously be accomplished automatically via optical scanning and image analysis. On machines and automatic devices for the manufacture of multi-layer orifice disks, the material, metal thickness, desired opening geometries, and other parameters can be ideally adapted for the particular application.
It is particularly advantageous to make the metal foils available in the form of foil strips or foil carpets for further processing.
Advantageously, the metal foils are made available in rolled-up form, since optimum space utilization on a production line is thereby possible.
It is particularly advantageous to provide on the edges of the metal foils, at regular intervals, auxiliary openings into which centering mechanisms can engage, in order to ensure that the individual metal foils are brought together in positionally accurate fashion. It is moreover very advantageous if sickle-shaped auxiliary openings, which with their inner boundaries define the diameter of the rounds that represent the orifice disk blanks and are to be detached from the metal foils, are introduced into the metal foils. These auxiliary openings taper to a point at their ends, and are separated from the respective nearest auxiliary opening only by a very narrow web. Upon subsequent punching, deep-drawing, or cupping, these webs break, thus isolating the rounds or orifice disks from the orifice disk strip.
Welding, soldering, or adhesive bonding, in all their various forms of application, ideally serve as joining methods to be used optionally to join several metal foils within or outside the rounds.
In particularly advantageous fashion, isolation of the rounds and bending of the rounds into cup-shaped orifice disks is accomplished in a deep drawing tool in one and the same processing step.
The orifice disk according to the present invention has the advantage of being very easy to manufacture, and very easy and economical to install on an injection valve. The embodiments according to the present invention of the multi-layer orifice disks completely prevent any sliding of individual layers against one another. Despite its multi-layer configuration, an orifice disk of this kind is inherently entirely stable and can be attached in an easily handled fashion. Advantageously, a retaining rim bent away from the base part of the orifice disk is suitable for attachment to a valve seat support using a weld bead. Support elements, such as support disks or support rings, are not necessary when securing the orifice disk.
The injection valve according to the present invention having has the advantage that uniform ultrafine atomization of the medium to be sprayed is achieved in simple fashion without additional energy, a particularly high atomization quality, and spray shaping adapted to the particular requirements, being attained. This is attained, advantageously, by the fact that an orifice disk arranged downstream from a valve seat has an opening geometry for complete axial passage of the medium, in particular of the fuel, which is delimited by a valve seat element surrounding the fixed valve seat. The valve seat element thus already assumes the function of influencing flow in the orifice disk. In particularly advantageous fashion, an S-bend is achieved in the flow in order to improve atomization of the fuel, since the valve seat element covers, with one lower end face, the spray openings of the orifice disk.
The S-bend in the flow attained by way of the geometrical arrangement of valve seat element and orifice disk allows the creation of spray shapes with high atomization quality. In conjunction with correspondingly embodied valve seat elements for single-, double-, and multi-stream sprays, the orifice disks make possible spray cross sections in innumerable variants, for example rectangles, triangles, crosses, and ellipses. Unusual spray shapes of this kind allow exact optimal adaptation to predefined geometries, for example to different intake manifold cross sections of internal combustion engines. This yields the advantages of geometrically adapted utilization of the available cross section for homogeneously distributed, emissions-reducing mixture delivery, and avoidance of emissions-promoting wall film deposits on the intake manifold wall. Wit
Goppert Siegfried
Heyse Jorg
Holz Dieter
Hopf Wilhelm
Schraudner Kurt
Kenyon & Kenyon
Morris Lesley D.
Robert & Bosch GmbH
LandOfFree
Method and device for producing a perforated disc for an... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and device for producing a perforated disc for an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for producing a perforated disc for an... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2462244