Method and device for producing a choice of either single...

Optical waveguides – Having nonlinear property

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06430345

ABSTRACT:

BACKGROUND INFORMATION
The present invention relates to a method for generating a choice of individual photons or photon pairs in an optical channel. The invention furthermore relates to a device for implementing the method, the device being usable in particular as a controllable light source for one-photon or two-photon states and/or as a controllable separating filter or controllable gate for quantum states. The invention also relates to a network composed of a plurality of such devices.
BACKGROUND INFORMATION
The appearance of parametric fluorescence occurs in optically non-linear crystals. Under certain circumstances, a single energy quantum (photon) of an intensive optical pumping light source, usually a laser light source, disintegrates with a certain probability into two energy quanta or photons of approximately half the energy (H. Paul,
Non
-
linear Optiks,
vol. 2, page 94 ff, Berlin 1973). In the case of monochromatic or narrow-band excitation, the spectral distribution of the fluorescence photons is not necessarily narrow-band as well. However, because of the conservation of energy, the sum of the energies of the two fluorescence photons must be equal to the energy of the excitation photon. The same holds true for the conservation of momentum. Therefore, the parametric fluorescence only occurs when working with specific excitation geometries, i.e., given a specific alignment of the pump beam relative to the optical axes of the non-linear crystal and given specific adapted refractive indices. The result is that, depending upon the excitation geometry, the fluorescent light is emitted with two different main frequencies, i.e. wavelengths, into defined space directions relative to the direction of propagation of the pump beam. The two fluorescence photons are emitted virtually simultaneously, i.e., within a time of approximately 10. femtoseconds, and into the same or different space directions depending on the type of non-linear crystal and the excitation geometry. Their polarization direction is established in the same way. The physical properties of the two photons of the parametric fluorescence are linked to one another by a number of secondary conditions; quantum mechanically, they are in an entangled state. The entangled photons are a single state from the standpoint of quantum mechanics, in which two photons remain inseparable, it being possible to make precise statements about the physical properties of one photon using measurements on the other respective photon. Such two-photon states are of technical importance as the starting state for quantum cryptography, the optical random-sequence generator or for the quantum computer.
At present, only classical methods are known for separating the photons of a swarm from one another and coupling into different optical channels, or else jointly into a single optical channel such as a glass fiber. A familiar classical possibility for separating a plurality of photons and coupling into two different channels is, first of all, the customary beam splitter, a partially mirrored glass plate in which the mirror coating is semitransparent for the wavelength utilized, or contains small holes. The partial mirroring can also be effected by vapor-deposited thin layers. These beam splitters usually stand at an angle a in the beam path, so that a portion of the light falling on the beam splitter is deflected from the original beam direction. Another possibility for coupling out a portion of the photons of a swarm is the use of a polarizing beam splitter. Its properties are based on the principle of reflection at dielectric layers or crystal-optical prisms such as the Nicol prism.
In the event the individual photons are coherent among themselves, interference methods are also available for the beam splitting. Here, the best-known are the Michelson interferometer which transmits the constructively interfering photons and reflects the destructively interfering photons, as well as the Mach-Zehnder interferometer which sorts constructively and destructively interfering photons into two different output channels. The diffraction grating also belongs to the beam splitters operating interferometrically.
One characteristic of all these beam splitters is that the distribution of the individual photons at the beam splitter into the individual output channels can only be predicted with regard to their distribution probability. A photon pair is separated at a 1:1 dividing beam splitter with the probability of ½, regardless of whether it is a question of two differentiable or two non-differentiable photons. However, it is impossible to make an exact statement as to whether a currently existing photon pair is actually separated or remains together. Therefore, the controlled transition from a two-photon state to two individual photons is not possible at present. However, the controlled generation of individual photons or photon pairs in an optical channel is important in the improvement of quantum cryptography methods, in metrology and in the development of a quantum computer.
SUMMARY OF THE INVENTION
Therefore, an object of the present invention is to specify a method for generating a choice of individual photons or photon pairs in an optical channel. The intention is also to provide a device which, while carrying out the method, can be used as a controllable light source for one-photon and two-photon states in quantum cryptography and in metrology, and as a controllable separating filter or gate for quantum states in communications networks and computing networks.
DISCLOSURE OF THE INVENTION AND ITS ADVANTAGES
The objective is achieved in a method having the following steps:
In the first method step, a two-photon state is generated, thus a pair of quantum-mechanically correlated photons which are in an entangled state. The photon pair is preferably generated in known manner by parametric fluorescence, using an optically non-linear crystal in suitable excitation geometry, a laser preferably being used as the pumping light source. Depending on the excitation geometry and type of the non-linear crystal, the fluorescence photons leave the crystal in the same or different directions at a defined angle with respect to the direction of the exciting beam, the fluorescence photons being polarized either identically or in an orthogonally linear manner between themselves. If the frequency of the pump light is 2&ohgr;
0
, the individual photons of the photon pair have the frequencies &ohgr;
1
and &ohgr;
2
, respectively, whereby &ohgr;
1
+&ohgr;
2
=2&ohgr;
0
.
In the next step, if the photons are emitted in a collinear manner, the photon pair is separated spatially, while retaining the quantum-mechanical correlation. This is done, for example, based on the polarization of the fluorescence photons, provided this is different, or based on the wavelength, for example, with the aid of a wavelength-selective mirror.
In the next step, in each case one photon is coupled into each optical channel. One of the channels contains a dual-beam or multi-beam interferometer with a variable optical path-length difference &dgr;
1
F
−&dgr;
1
S
; the other channel contains an optical delay section having the optical length &dgr;
1
. Both channels are reunited again through a beam splitter. The optical channels have the same basic length, understood by this being the optical distance of the location at which the photons of the photon pair are spatially separated, to the beam divider, i.e. to the detectors when passing through the respective beam-component paths; in the case of the beam path with interferometer, the length determined via the interferometer arms. The optical paths covered in the interferometer and in the optical delay section, respectively, must be taken into account when determining the basic length.
The interferometer utilized in one of the optical channels is a two-beam interferometer such as a Mach-Zehnder or a Michelson interferometer, or a multi-beam interferometer such as a Fabry-Perot interferometer, or an Echelon. In this context

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and device for producing a choice of either single... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and device for producing a choice of either single..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for producing a choice of either single... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2930891

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.