Surgery: light – thermal – and electrical application – Light – thermal – and electrical application – Thermal applicators
Reexamination Certificate
2002-08-09
2004-12-14
Gibson, Roy D. (Department: 3739)
Surgery: light, thermal, and electrical application
Light, thermal, and electrical application
Thermal applicators
C607S106000
Reexamination Certificate
active
06830581
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates generally to the lowering, raising, and control of the temperature of the human body. More particularly, the invention relates to a method and intravascular apparatus for controlling the temperature of the human body.
BACKGROUND
Background Information—Organs in the human body, such as the brain, kidney and heart, are maintained at a constant temperature of approximately 37° C. Hypothermia can be clinically defined as a core body temperature of 35° C. or less. Hypothermia is sometimes characterized further according to its severity. A body core temperature in the range of 33° C. to 35° C. is described as mild hypothermia. A body temperature of 28° C. to 32° C. is described as moderate hypothermia. A body core temperature in the range of 24° C. to 28° C. is described as severe hypothermia.
Hypothermia is uniquely effective in reducing ischemia. For example, it is effective in reducing brain injury caused by a variety of neurological insults and may eventually play an important role in emergency brain resuscitation. Experimental evidence has demonstrated that cerebral cooling improves outcome after global ischemia, focal ischemia, or traumatic brain injury. For this reason, hypothermia may be induced in order to reduce the effect of certain bodily injuries to the brain as well as ischemic injuries to other organs.
SUMMARY OF THE INVENTION
The apparatus of the present invention can include a heat transfer element which can be used to apply cooling to the blood flowing in a vessel. The heat transfer element, by way of example only, comprises first and second elongated, articulated segments, each segment having a turbulence-inducing exterior surface. A flexible joint can connect the first and second elongated segments. An inner coaxial lumen may be disposed within the first and second elongated segments and is capable of transporting a working fluid to a distal end of the first elongated segment. In addition, the first and second elongated segments may have a turbulence-inducing interior surface for inducing turbulence within the pressurized working fluid. The turbulence-inducing exterior surface may be adapted to induce turbulence within a free stream of blood flow when placed within an artery or vein. The turbulence-inducing exterior surface may be adapted to induce a turbulence intensity greater than 0.05 within a free stream blood flow. In one embodiment, the flexible joint comprises a bellows section which also allows for axial compression of the heat transfer element.
In an embodiment, the turbulence-inducing exterior surfaces of the heat transfer element comprise one or more helical ridges. Adjacent segments of the heat transfer element can be oppositely spiraled to increase turbulence. For instance, the first elongated heat transfer segment may comprise one or more helical ridges having a counter-clockwise twist, while the second elongated heat transfer segment comprises one or more helical ridges having a clockwise twist. Alternatively, of course, the first elongated heat transfer segment may comprise one or more clockwise helical ridges, and the second elongated heat transfer segment may comprise one or more counter-clockwise helical ridges. The first and second elongated, articulated segments may be formed from highly conductive materials.
The heat transfer device may also have a coaxial supply catheter with an inner catheter lumen coupled to the inner coaxial lumen within the first and second elongated heat transfer segments. A working fluid supply configured to dispense the pressurized working fluid may be coupled to the inner catheter lumen. The working fluid supply may be configured to produce the pressurized working fluid at a temperature of about 0° C. and at a pressure below about 5 atmospheres of pressure. The working fluid may be isolyte, saline, D5W, etc.
In yet another alternative embodiment, the heat transfer device may have three or more elongated, articulated, heat transfer segments having a turbulence-inducing exterior surface, with additional flexible joints connecting the additional elongated heat transfer segments. In one such embodiment, by way of example, the first and third elongated heat transfer segments may comprise clockwise helical ridges, and the second elongated heat transfer segment may comprise one or more counter-clockwise helical ridges. Alternatively, of course, the first and third elongated heat transfer segments may comprise counter-clockwise helical ridges, and the second elongated heat transfer segment may comprise one or more clockwise helical ridges.
The turbulence-inducing exterior surface of the heat transfer element may optionally include a surface coating or treatment to inhibit clot formation.
The present invention also envisions a method of cooling the body which comprises inserting a flexible, conductive cooling element into the inferior vena cava from a distal location, and providing a means of warming the body to prevent shivering by means of a cooling blanket. The method further includes circulating a working fluid through the flexible, conductive cooling element in order to lower the temperature of the body. The flexible, conductive heat transfer element absorbs more than about 25, 50 or 75 Watts of heat.
The method may also comprise inducing turbulence within the free stream blood flow within an artery or vein. In one embodiment, the method includes the step of inducing blood turbulence with a turbulence intensity greater than about 0.05 within the vascular system. The circulating may comprise inducing mixing flow of the working fluid through the flexible, conductive heat transfer element. The pressure of the working fluid may be maintained below about 5 atmospheres of pressure.
The cooling or warming may comprise circulating a working fluid in through an inner lumen in the catheter and out through an outer, coaxial lumen. In one embodiment, the working fluid remains a liquid throughout the cycle. The working fluid may be aqueous.
The present invention also envisions a cooling or warming catheter comprising a catheter shaft having first and second lumens therein. The catheter also comprises a cooling or warming tip adapted to transfer heat to or from a working fluid circulated in through the first lumen and out through the second lumen, and turbulence-inducing structures on the tip capable of inducing free stream turbulence when the tip is inserted into a blood vessel. The tip may be adapted to induce turbulence within the working fluid. The catheter is capable of removing at least about 25 Watts of heat from an organ when inserted into a vessel supplying that organ, while cooling the tip with a working fluid that remains a liquid in the catheter. Alternatively, the catheter is capable of removing at least about 50 or 75 Watts of heat from an organ when inserted into a vessel supplying that organ, while cooling the tip with an aqueous working fluid.
In another embodiment, a cooling or warming catheter may comprise a catheter shaft having first and second lumens therein, a cooling or warming tip adapted to transfer heat to or from a working fluid circulated in through the first lumen and out through the second lumen, and turbulence-inducing structures on the tip capable of inducing turbulence when the tip is inserted into a blood vessel.
The present invention may also provide a temperature control apparatus comprising a flexible catheter which can be inserted through the vascular system of a patient to an artery or vein, with an inflatable balloon heat exchanger near the distal end of the catheter. The present invention also encompasses a method for using such a device to perform cooling, heating, or temperature management. After placement in a vessel, an embodiment of the invention includes an apparatus where the heat exchanger balloon is inflated by pressurization with a working fluid, such as saline, isolyte, D5W, or other similar fluids, or combinations of these, via a supply lumen in the catheter. The heat exchanger balloon has one or more blood passageways passing
Gibson Roy D.
Innercool Therspies, Inc.
Mayer Fortkort & Williams
Wieczorek Mark D.
Williams Karin L.
LandOfFree
Method and device for patient temperature control employing... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and device for patient temperature control employing..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for patient temperature control employing... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3290581