Liquid purification or separation – Processes – Including controlling process in response to a sensed condition
Patent
1985-01-04
1986-11-11
Wyse, Tom
Liquid purification or separation
Processes
Including controlling process in response to a sensed condition
210760, C02F 178
Patent
active
046221514
DESCRIPTION:
BRIEF SUMMARY
Ozone is known as one of the most effective oxidizing agents and it is therefore used for the sterilization of fluids, e.g. drinking water, waste water, mud or exhaust gas, as well as for the non-microbic, i.e. chemical treatment of fluids, e.g. industrial waste water with organic load material.
A great advantage with the use of ozone for carrying out sterilization of fluids is its own decay, i.e. surplus ozone decays into oxygen and prevents a further load on the environment as for example in the case of the sterilization with chlorine. Moreover, no storage is necessary, because ozone can be produced on location from oxygen, e.g. out of air.
The use of ozone for carrying out sterilization of fluids as well as a device for it have been known for a long time. But up to now a reliable operation of the ozonizer has stood in the way of its widespread use.
An analysis has found that for the majority of the cases of damage a return flow of fluid to be brought into contact with the ozone-bearing gas into the ozonizer is responsible: if the fluid is a liquid, a short-circuit current is generated in the ozonizer between the electrodes. If the fluid is a gaseous fluid, a condensation of humidity, i.e. water vapor, on the cooled electrode surfaces causes a change in the electrode gap, so that a local high-energy spark discharge can destroy the ozonizer. The destruction of the ozonizer is carried out identically by solid matter particles deposited on the electrode surface.
An introduction of humidity, or solid matter particles, respectively, into the ozonizer is eliminated to a large extent according to the state of the art by gas driers and dust filters. These safety measures are insufficient when the ozonizer is of the spark discharge type and is cooled by the fluid to be treated. When the fluid is cold, the relative humidity of the air, even after passing a drier may be too high, so that condensation of water occurs in the spark discharge area which may destroy the ozonizer. It is therefore the object of the invention to disclose a method and an implementation of the method that do not suffer from the described drawbacks.
By using a valve that operates without the requirement of foreign energy and only allows one direction of flow, preferably a nonreturn valve equipped with a membrane, an intrusion of fluid into the ozonizer is also prevented when the ozone equipment is turned off, i.e. the protection is also ensured in the case of a power failure. A mixer arranged on the ozonizer minimizes the ozone transportation time between the ozonizer and the mixer. Due to the minimal transportation time the natural ozone decay is minimized, so that a maximum of the ozone produced in the ozonizer is admixed to the fluid and can become effective with it.
Further development of the invention increases the operational safety of the method by using a measuring device for monitoring the relative humidity determines a too high humidity content of the gas and thereby interrupts the ozonizer current. In this way a condensation of water on the cooled electrodes is prevented. Moreover, by using dry gas the ozone yield is increased and the formation of nitrous gases is minimized.
Monitoring of the gas throughput ensures a continuous feeding of the ozonizer with fresh gas and thus a continuous production of ozone. If the gas throughput falls below a preferably adjustable nominal value, in this case also the ozonizer current is interrupted.
In the preferred use of a measurement device for determining the relative humidity as well as a gas throughput meter the error reporting signals are practically correlated by an "OR-connection". The resulting signal of this connection can e.g. be used to drive an alarm device (acoustically and/or optically) and/or to drive further elements, e.g. the fluid pump or the water vapor removal device.
Of course the error reporting signal of each individual measurement device can also be processed further separately.
In an embodiment of the method the gas to be ozonized is conducted before its entry into the o
REFERENCES:
patent: 3685656 (1972-08-01), Schaefer
patent: 3780163 (1973-12-01), Callighan
patent: 4178239 (1979-12-01), Lowther
Gschwend K.
Hiltebrand Peter
Laederach H. E.
Ruf Arthur
Wessendorf, Jr. Walter F.
Wyse Tom
LandOfFree
Method and device for ozonization of a fluid does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and device for ozonization of a fluid, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for ozonization of a fluid will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-375949