Radiant energy – Luminophor irradiation
Reexamination Certificate
1999-05-25
2002-03-26
Hannaher, Constantine (Department: 2878)
Radiant energy
Luminophor irradiation
C250S459100, C356S073000
Reexamination Certificate
active
06362487
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a method for nondestructive detection and characterization of crystal defects in monocrystalline semiconductor material, and to a device for detecting and characterizing crystal defects.
2. The Prior Art
In order to be suitable for further processing for making components or integrated circuits, monocrystalline semiconductor material, for example silicon material, must meet certain requirements. Consequently, material exhibiting crystal defects, for example dislocations, must be detected, characterized and removed.
Within the scope of the invention, the term “detection” is intended to mean the identification of regions in monocrystalline semiconductor material which suffer from crystal defects. The term “characterization” is intended to mean the allocation of these crystal defects to a defect group.
Growth-related crystal defects actually occur during the formation of monocrystalline semiconductor material. It is, however, also possible for crystal defects not to be generated until the subsequent production of the semiconductor wafers or the components. In this case, they are referred to as process-induced crystal defects. Crystal defects may occur both on the surface of the specimen and inside the specimen.
The nomenclature for crystal defects is in accordance with the standards from DIN (Deutsches Institut für Normung e.V.) and ASTM (American Society for Testing Materials, 1916 Race St., Philadelphia, Pa. 19103). The documents DIN 50434 and ASTM F1241-93, D93-3/4, F154-88, F416-75 and F416-88 are particularly relevant.
Examples of crystal defects which, in particular, can be detected in a silicon crystal rod include dislocations, stacking faults and point defect aggregates. In the silicon wafer, defects which can be detected include cracks and eruptions. Particularly in the wafer edge region, defects caused by holding tools, for example scratches, can be detected. Defects developed by heat treatments, such as dislocations and stacking faults, can also be detected.
In the prior art, crystal defects in monocrystalline semiconductor material are examined, for example, by defect etching. This involves preferentially acting chemical etching. In this case, one component of the etch solution, for example HNO
3
, oxidizes the semiconductor material, a second, for example HF, dissolves the oxide and another, for example CH
3
COOH, controls the etching rate by acting as a kind of diluent. The oxidation in the vicinity of a crystal defect takes place in a different way than does the oxidation of perfectly crystalline surroundings. This difference is then examined, for example, using an optical reflected-light microscope. Using this method, it is possible to detect and characterize crystal defects which are detrimental to semiconductor applications.
All defect etching methods change the specimen material, both chemically and morphologically, and thus have a destructive effect. The specimen material needs to be cut beforehand from the rod-shaped single crystal in the form of thin test wafers.
Using other prior art methods, for example electrical resistance measurement, it is likewise possible to detect a modified material property in the region of crystal defects. In relation to the surroundings with unperturbed crystallinity, a signal contrast is measured in this case but without the possibility of characterizing the crystal defect. The characterization is achieved only after further investigations, for example by defect etching (cf.
VLSI Electronics, Microstructure Science
Vol. 12
, Silicon Materials
' Academic Press, 1985).
Other alternative prior art methods, for example X-ray topography, can only be implemented with complicated equipment and by spending a great deal of time. These prior art methods have only limited suitability for control carried out on a production line.
For determining the electrical parameters of a semiconductor, EP 0 735 378 A2 has described the measurement principle of photothermal heterodyne spectroscopy (PTH spectroscopy) in combination with photoluminescence heterodyne spectroscopy (PLH spectroscopy).
The PTH method is based on depositing energy in a specimen to be examined, by absorption of intensity-modulated laser light in defined ranges at two modulation frequencies. In the specimen, a temperature wave (heat wave) is produced, and in semiconductors a charge-carrier wave is produced in addition. The amplitude and the phase of the wave depend on the physical properties of the specimen. The two response waves are optically detected in the reflection of the stimulated laser light. This is through the antiphase modulation of the dielectric properties of the semiconductor which they cause, and are measured with phase resolution. The value measured is the conversion coefficient K. This K indicates the fraction of the laser power which, in proportion to the laser power density absorbed in the object to be measured, is converted to the differential frequency by interaction with the object to be measured.
The PTL method is based on a response measurement method which is operated in the frequency domain and which tracks the relaxation of nonequilibrium charge carriers by time-resolved band-band luminescence radiation. The value measured is the normalized conversion efficiency of the luminance output L. PTH/PLH spectroscopy as such does not allow actual characterization of the crystal defects.
J. Appl. Phys
. 30, (1959) 1631 reports that crystal defects induce optical birefringences which are detected by the SIRD method (SIRD—scanning infrared depolarization). This method was first used by Lundt et al. as an evaluation method in silicon wafer production (H. Lundt, M. Kerstan and R. Weiss,
Proc. of the Spring Topical Meeting of the American Society for Precision Engineering
, 42
, Tucson
1993). It is not, however, possible for individual crystal defects to be detected and characterized using the SIRD method.
Some of the methods and devices for detecting and characterizing crystal defects in monocrystalline semiconductor material according to the prior art do not work nondestructively e.g. preferentially etching, while others can only be implemented with a high outlay on equipment and safety (e.g. x-ray, topography). For the time and position measurements independent of a production line, which are, furthermore, time-consuming, special test wafers need to be prepared in each case. In view of the increasing wafer diameter of silicon wafers, these test wafers represent an ever more expensive starting material for this type of analysis, especially when the absence of defects has been confirmed. Further, the aforementioned methods, as individual methods, and the devices mentioned are not suitable for controlling a mass-produced product, such as silicon wafers on a production line.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a method and a device which allow rapid nondestructive detection of crystal defects on monocrystalline silicon material, for example silicon wafers or silicon rods. A further object of the invention is to characterize the crystal defects.
These objects are achieved by methods for detecting and characterizing crystal defects in monocrystalline semiconductor material by means of photoluminescence heterodyne spectroscopy, photothermal heterodyne spectroscopy and SIRD methods, wherein the detection and characterization is carried out by a combination of these measurement methods. These objects are also achieved by a device for carrying out these measurements.
No one of the aforementioned measurement methods is entirely suitable for the reliable characterization of crystal defects. Conversely, the combination, according to the invention, of the measurement methods, in the form of the device of the invention, permits not only reliable detection but also reliable characterization of the crystal defects as well.
For example, the value of the magnitude of the conversion coefficient K in the PTH spectroscopy is used for the character
Ehlert Andreas
Helmreich Dieter
Kerstan Michael
Lundt Holger
Collard & Roe P.C.
Gabor Otilia
Hannaher Constantine
Wacker Siltronic Gesellschaft für Halbleitermaterialien AG
LandOfFree
Method and device for nondestructive detection of crystal... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and device for nondestructive detection of crystal..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for nondestructive detection of crystal... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2874523