Telecommunications – Transmitter and receiver at separate stations – Having measuring – testing – or monitoring of system or part
Reexamination Certificate
1999-03-15
2002-08-06
Urban, Edward F. (Department: 2685)
Telecommunications
Transmitter and receiver at separate stations
Having measuring, testing, or monitoring of system or part
C455S456500, C455S067700, C455S423000, C342S357490
Reexamination Certificate
active
06430397
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to a method and a device for measuring the transmission quality in cells of mobile radio networks, to make it possible for the network operator to find positions within the cells of the global system for mobile communication (GSM), where the transmission quality is poor.
Structure and organization of a GSM network divided into individual cells as the smallest geographic radio coverage area, served by a base supply station (BTS), is for example known from the book “Mobilfunk und intelligente Netze” by Jatzek gala, Vieweg Verlag 1994, ISEN 3-528-05302-X. [Translation of the title of this German-language publication “Mobile radio and intelligent networks”.] Due to local topography and man-made surroundings, time and again disturbances can occur, both within the cells and when crossing individual cells. Such disturbances lead to dissatisfaction in the case of the users of the mobile radio network and are also undesirable from the point of view of network operators.
In order to find these disturbance zones, measurements are undertaken either from a vehicle, by means of mobile test systems, or from the network. Both measuring methods have certain limitations. The main disadvantage of undertaking measuring from a vehicle is that a qualified person has to travel in the vehicle through the cells; that measuring in one direction only, namely the direction to the vehicle, is possible; and that qualifying the cells i s very time-intensive. The main disadvantage in measuring from the network is that no geographic position can be acquired with the measurement, so that no detailed statement is possible about the geographic location in the disturbance zone.
SUMMARY OF THE INVENTION
It is thus the object of the present invention to propose a method and a device which does not require the use of highly-qualified employees to travel around in the cell to be measured, and which can provide precise information concerning the transmission quality within a cell.
According to the invention, this object is met by the method and device of the present invention. With the characteristics according to claim 1, as well as by a device with the characteristics of claim 7. Further advantageous embodiments of the method and the device are provided in the respective dependent claims.
According to the method, the cells to be measured are travelled through, using a mobile radio station (MS) and a GPS receiver, and the geographic position and the time are recorded at specified intervals. The mobile station is a normal receiving device, for example a mobile telephone, which consists of the known functional groups of mobile terminal, terminal adapter and terminal equipment. In addition, this device comprises a receiving device which is able to receive the geographic position beamed by satellites as well as the local time, based on the so-called global positioning system (GPS). This mobile station can for example be located in the boot of a vehicle, including a taxi or a bus. In specified intervals it records the GPS time and the geographic position where the vehicle is at present. In addition, in specified time intervals, call build-up signals of any terminal are sent to the mobile station (MS) via a base transmission station (BTS) or vice-versa, and the GPS position for each call build-up signal is stored in the mobile station. The base transmission station is a base transmission station belonging to the cell to be examined. After the connection has been established, it is automatically interrupted after a specified time and established anew, so as to minimize synchronization errors. At the same time, the signals are recorded which were sent at specified intervals via the BTS to the respective MS, and concurrently the time stamp of the mobile radio analysis device is recorded. The data obtained in this way are mixed together, sorted according to the time stamps. Subsequently the measured results are issued by geographic position and time. Thus, based on the exact geographic position obtained, an analysis of the network by means of the mobile radio analysis device can be carried out regarding the parameters usual for qualitative assessment.
Sorting of the recorded data according to time stamp is such that to each of the signals recorded by the mobile radio analysis device, that position is allocated which, by comparing the time stamp of the mobile station and the mobile radio analysis device, is nearest to the position of the entire signal.
Due to the clock pulses in the mobile station possibly differing from those in the mobile radio analysis device, according to a preferred embodiment, taking into account the GPS clock pulse as the master time, the internal clock pulse of the mobile station and of the mobile radio analysis device is synchronized. The clock pulses of the mobile radio analysis device are determined by the PCM clock pulses of the measuring interface (Abis interface). Correction of the time stamp of the mobile station and the mobile radio analysis device is according to the condition tx
corr
=tx+(t
GPS
−t
q
)
×x, where t
GPS
is the time within a GPS period which for example can be assumed to be one second, because the GPS sends a signal every second; t
q
is the stretch of time which the respective measuring unit measures whose time stamp is to be corrected while the GPS travels exactly this one second; tx is the time stamp to be corrected, i.e. the asynchronous message which is not received in the one-second grid of the GPS. This message is corrected in that time intervals are placed within a GPS period, with the time intervals x being selected in such a way that they fairly closely approximate the measured time stamp. x indicates the number of the interval in which the time stamp resides which is to be corrected with respect to the interval. Correction takes place according to the formula with the total number n of all intervals. As mentioned above, the interval length has to be determined, depending on requirements (division of the GPS period of one second into for example 1,000, 100 or only 10 intervals).
In order to also compensate for time delays regarding the time stamp, which time delays can occur due to transmitting the data from the BTS to the MS, according to a further preferred embodiment, prior to sorting the recorded data and after synchronization with the GPS clock pulse, the time stamp of an identical signal of the MS and the mobile radio analysis device is compared, and if there is a difference, the difference is added to the time stamps of the MS as a transmission delay.
For evaluation, the recorded data of the mobile station can be transmitted to the mobile radio analysis system, via the global system for mobile communications. This saves time and effort compared to recording the data on a diskette before feeding it to the mobile radio analysis device.
The device consists of at least one mobile station comprising a GPS receiver for determining the geographic position of the mobile station and the GPS time and a recording unit for recording the geographic position and the respective time in specified intervals as well as the time when a call build-up signal was received. The device further comprises a mobile radio analysis device which by means of an interface (Abis interface) is switchable between one or several base transmission stations (BTS) and the respective base station controls (BSC). The mobile radio analysis device (MA) further comprises a GPS receiver for determining the geographic position and the time; in particular in order to synchronize the GPS time as a master time for sychronizing the internal MA time, based on the Abis time. Furthermore, the MA comprises a data recording unit for recording and storing the transmitted data and time stamps between at least one of the base transmission stations and one of the mobile stations, a data evaluation device for mixing together the recorded data of the mobile station with the recorded transmitted data, and a data unit for issuing th
Gary Erika A.
Urban Edward F.
Wandel & Goltermann Management Holding GmbH
LandOfFree
Method and device for measuring the transmission quality in... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and device for measuring the transmission quality in..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for measuring the transmission quality in... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2967573