Measuring and testing – Vibration – Sensing apparatus
Reexamination Certificate
2002-01-28
2004-07-13
Williams, Hezron (Department: 2856)
Measuring and testing
Vibration
Sensing apparatus
C073S661000
Reexamination Certificate
active
06761071
ABSTRACT:
BACKGROUND OF THE INVENTION
Field of the Invention
The invention relates to a method and a device for measuring dimensions of gaps and hollow spaces in motor vehicle body construction.
In vehicle body construction, gaps and hollow spaces are formed when joining individual contoured components together to form a whole vehicle body. These gaps and hollow spaces have to be measured. Particular attention must be paid to the dimensions of gaps and hollow spaces inside a vehicle body or at vehicle body regions against which either attachments or in particular seals are to be fitted. Further, a vehicle body cooperates with and corresponds to parts that are mounted as a part of the outer body shell. The vehicle body especially corresponds to or cooperates with moving parts such as doors, gates, hinged covers and flaps. When fitting these moving parts such as doors, covers and flaps, gap dimensions are important, firstly because they must implicitly contain a structural tolerance, but at the same time also because they must conform to standardized seal profiles in such a way that the desired sealing effect is obtained when being in a closed state.
In practice, door gap dimensions are determined through the use of feeler gages to within 0.1 mm. The feeler gages used for this purpose are so-called parallel feelers, which, however, are only suitable for measuring parallel surfaces. Such parallel-aligned surfaces rarely occur, however, so that a more precise measurement is needed in the case of variable gap dimensions.
In order to determine these gap dimensions on the actual object an X-ray examination may be undertaken, which requires a correspondingly expensive measuring set-up. Such an X-ray examination requires a ring-shaped measurement set-up which must surround the area to be analyzed in an annular manner. This set-up is however only possible when the components to be analyzed have relatively small component dimensions.
A further disadvantage in the case of X-ray examination is the need for a separate test booth to protect the test personnel from radiation. This makes such a procedure rather expensive, especially for motor vehicle manufacture, and particularly in this case where a contrast medium has to be used, which must for example correspond to the seal element which is subsequently pressed into the set position. For this purpose, various sections produced from a modeling compound are inserted into the corresponding hollow space, clearance, joint or gap.
A disadvantage is that methods of this type are too expensive and due to the X-ray radiation, moreover, may pose a risk to the health of the operating personnel.
SUMMARY OF THE INVENTION
It is accordingly an object of the invention to provide a method and a device for measuring gaps and hollow spaces which overcome the above-mentioned disadvantages of the heretofore-known methods and devices of this general type and which allow to acquire dimensions of gaps, hollows spaces or clearances accurately and consistently using simple measures.
With the foregoing and other objects in view there is provided, in accordance with the invention, a method for measuring gaps and hollow spaces in motor vehicle body construction, the method includes the steps of:
introducing a filler element into a gap or a hollow space; and
measuring the gap or the hollow space by using an ultrasonic testing unit coupled to the filler element.
The method according to the invention is based on the idea of introducing a filler element, which is coupled to an ultrasonic testing device, into a hollow space, clearance or gap to be measured. The method according to the invention poses no health risks, because it uses an ultrasonic measuring method. Also, the method according to the invention measures the specific geometries of gaps or hollow spaces with great accuracy, even when the geometries do not have parallel boundaries.
According to an advantageous mode of the invention, the filler element is a sealing element in the form of a sealing strip or weather strip. If the ultrasonic probe is pointed, the point of the ultrasonic probe can be inserted or stuck into the seal that is already put in place and the dimension of the gap or hollow space at this location can then be determined. It is important to size the dimensions of the gaps, hollow spaces or clearances, including a given manufacturing tolerance, as well as the cross sectional profile of the seal, which is to be inserted, such that the seal is in any case suitably compressed or pressed into a sealing contact in order to achieve an optimum sealing effect.
A particular example of this are the door seals or weather strips used where gaps occur between the moveable body parts, that is the door frame parts and the pillar elements of the body, which have to be dimensioned as described in order to achieve a corresponding sealing effect. In order to obtain optimally coordinated dimensions for this purpose, these dimensions of the hollow spaces, clearances or gaps must be suitably inspected.
According to a further mode of the invention, the dimensions of the gaps or hollow spaces are measured through the use of a filler element in the manner of a medical intravascular ultrasonic measurement. This method of measurement advantageously uses existing experience and knowledge on how to interpret ultrasonic images.
According to a further mode of the invention, the measurement is analyzed with a local or spatial resolution by using a corresponding signal processing, wherein it is possible either to position the ultrasonic probe as centrally as possible in the filler element, where a corresponding cross-sectional contour is to be determined, or to carry out a suitable electronic processing in such a way that even an asymmetrical positioning of the ultrasonic probe in the filler element is of no significance, and depth profiles can still be represented.
With the objects of the invention in view there is also provided, a device for measuring gaps and hollow spaces in motor vehicle body construction, including:
an ultrasonic testing unit having an ultrasonic probe; and
a filler element configured to be introduced in a gap or a hollow space to be measured, the filler element enclosing the ultrasonic probe.
With regard to the device according to the invention, the essence of the invention is that the filler element encloses the ultrasonic probe of the ultrasonic testing unit, and that the filler element can then be introduced into the hollow space or gap to be measured. The probe is thereby enclosed by a corresponding filler element, that is then inserted into the profile of the hollow space or gap to be measured.
For this purpose it is advantageous if the ultrasonic probe as such is provided with a rod-shaped tip so that it can penetrate into corresponding gaps of smaller dimensions.
In further advantageous embodiments, various filler elements may be used. The filler element may be composed of an elastomer, which molds to the corresponding shape of the gap or hollow space.
Alternatively, however, the filler element may be composed of a plastomer, which permanently takes on the shape of the external contour of the hollow space or gap to be measure and plastically reproduces the contour.
According to another feature of the invention, however, the filler element may be formed with a dimensionally unstable body, which does not retain its shape. This type of filler element may be embodied as a liquid-filled or paste-filled, balloon-like body. This balloon-like body filled with liquid or paste is now capable of conforming to any shape of hollow spaces or gaps, or of molding itself to the corresponding external contours, so that the subsequent ultrasonic measurement produces a very accurate image of the contour or dimensions of the gap or hollow space. The liquids or pasty materials used for this purpose may be of such a nature that they produce a correspondingly high-contrast image when performing a signal processing.
According to another feature of the invention, the filler element may be configured as an expansion element. This is a
Saint-Surin Jacques M
Volkswagen AG
Williams Hezron
LandOfFree
Method and device for measuring dimensions of hollow spaces... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and device for measuring dimensions of hollow spaces..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for measuring dimensions of hollow spaces... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3254222