Method and device for manufacturing a surface-structured...

Metal deforming – By use of tool acting during relative rotation between tool... – Spherical tool

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C072S078000, C072S121000, C072S126000, C072S370190, C072S370200

Reexamination Certificate

active

06666058

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention concerns a method and a device for producing a preferably thin-walled pipe conduit element having a surface structure reinforcing the pipe conduit element.
To improve the mechanical properties of pipe conduit elements, in particular to increase the bending strength and pressure resistance, the pipe conduit element wall is conventionally retroactively provided with a surface structure through deformation, wherein the surface structure can be formed e.g. by a plurality of planes disposed next to each other in the longitudinal and peripheral directions or by concave contours with different normals to the surface. Deformation of the pipe conduit element of this type increases its stability in the respective regions such that the wall thickness may be less than that of flat-walled pipe conduit elements while satisfying the required mechanical properties. For many applications of such pipe conduit elements, the associated substantial material and cost reductions are of interest as is, in particular, the low overall weight. These pipe conduit elements are suited e.g. for return or exhaust gas lines of automotive vehicles to reduce operating costs due to their lightweight construction.
DE 196 54 618 C1 e.g. discloses a surface-structured pipe conduit element. The pipe conduit element has regions of cycloid cross-section disposed between round cross-sectional segments having concave, curved surfaces disposed in the longitudinal and also in the peripheral directions. They provide acoustical insulation, with their longitudinal separation depending on the wavelength of the sound waves which are to be damped.
Mechanical or hydraulic methods are conventionally used to produce pipe conduit systems of the above-mentioned type. DE 41 03 078 C2 discloses e.g. a device for hydrostatic deformation of pipe conduit elements.
SUMMARY OF THE INVENTION
DE 25 57 215 A1 describes a method for deforming thin-walled pipe conduit elements. The inner or outer side of a pipe section is thereby supported with abutting support elements in the form of rings or spirals and is loaded hydraulically or pneumatically with external or internal pressure to produce inwardly or outwardly directed deformations, disposed between the support elements.
Disadvantageously, the known methods are only suited for localized application of a surface structure to a finite pipe section of given length since the respective pipe section which is to be provided with a surface structure must be sealed for loading with pressurized fluid. In accordance with prior art, only discontinuous production of surface-structured pipe conduit elements is possible, with which the finished pipe conduit element must be cut to length and supplied to the respective deformation means. The handling involved is relatively demanding and the deformation device stoppage times are relatively long. Hydraulic deformation requires a large investment in tools and, in particular, extensive maintenance for the pressure generating and sealing means.
It is the underlying purpose of the invention to propose a simple and inexpensive method for producing a preferably thin-walled pipe conduit element with a reinforcing surface structure as well as a device for carrying out such a method which eliminate the above-mentioned disadvantages.
This object is achieved in accordance with the invention through process control with a method of the above-mentioned type in that the pipe conduit element is continuously fed past at least one embossing element, which is directed around the periphery of the pipe conduit element jacket to mechanically emboss the surface structure by pressing the embossing element onto the jacket of the pipe conduit element.
The invention fully departs from the known hydro-deformation methods in that the surface structure is embossed purely mechanically onto the jacket of the pipe conduit element by means of the embossing element which circulates radially about the pipe conduit element. The inventive method is particularly suited for simple and inexpensive continuous structuring of endless pipes, wherein the endless pipe is guided past the circulating embossing element at a predetermined speed and is deformed in a manner corresponding to the surface contour of the embossing element through pressure exerted by the embossing element onto the jacket of the pipe conduit element. The circulating embossing element can thereby be suitably disposed to be substantially stationary in the longitudinal direction of the pipe conduit element such that the surface structure results from overlap of the advance of the pipe conduit element with the rotation of the embossing element. The surface structure embossed onto the pipe conduit elements through the inventive method provides them with a bending strength and pressure resistance along their entire length which is better than that of a smooth-walled pipe conduit element. Due to their low weight, the elements are particularly suitable for the automotive industry.
In a preferred embodiment, rolling bodies in the form of balls and/or rollers are used as embossing elements. This keeps the friction produced during embossing of the surface structure as small as possible.
An arrangement of several embossing elements distributed about the periphery of the jacket of the pipe conduit element is advantageously used, wherein e.g. three or more preferably equidistantly disposed embossing elements are used between which the pipe conduit element is accommodated such that it is automatically centered during passage through the rotating arrangement of embossing elements, with all embossing elements exerting the same pressure onto the jacket of the pipe conduit element.
While the depth of the surface structure can be controlled by the pressure exerted and/or the feed travel of the embossing elements, the shape of the surface structure can be controlled by the rotational speed of the embossing elements, the guiding speed of the pipe element or by the surface contour of the embossing elements contacting the pipe conduit element.
The pipe conduit element can optionally be temperature-treated before embossing the surface structure. In addition to production of surface-structured pipe conduit elements from a cold deformable material, e.g. metal, this facilitates production of surface-structured plastic pipes. The plastic pipe is brought to an increased temperature at which it is e.g. in a plastic transition state to prevent brittle fracture due to the deformation forces exerted through contact with the embossing elements.
For single-step continuous production of a, in particular thin-walled, pipe conduit element having a surface structure reinforcing the pipe conduit element from a sheet layer, a further development provides that the layer forming the jacket of the pipe conduit element is continuously unwound from a spool, the layer is drawn into the pipe conduit element, the longitudinal edges of the layer are continuously connected, in particular welded, and the surface structure is then mechanically embossed onto the jacket of the pipe conduit element as described above.
The invention also concerns a device for producing a preferably thin-walled pipe conduit element having a surface structure reinforcing the pipe conduit element which is suitable for carrying out a method of the above-mentioned type. In accordance with the invention, the device is characterized by at least one rotatable guidance which is disposed about the periphery of the jacket of a pipe conduit element and which can be continuously fed to the device, with at least one embossing element for embossing the surface structure onto the pipe conduit element. The inventive device is of simple and inexpensive construction and permits continuous, purely mechanical structuring of the jacket of the pipe conduit element without using pressure generating or sealing means which are expensive with respect to investment costs and maintenance.
The embossing elements are preferably formed by balls and/or rollers with the guidance preferably accommod

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and device for manufacturing a surface-structured... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and device for manufacturing a surface-structured..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for manufacturing a surface-structured... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3182327

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.