Method and device for loading a stent

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Arterial prosthesis – Stent combined with surgical delivery system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C623S909000

Reexamination Certificate

active

06471718

ABSTRACT:

This invention relates to a cartridge that stores a self-expanding stent in its expanded state until ready for placement, at which point it is compressed and transferred into a delivery tool.
Background of the Invention
The device may be packaged separately from deployment tool and loaded with a stent in which the stent is then transferred into the deployment tool prior to placement. The deployment tool could be reusable. Also, the stent would not be subjected to compression set due to compression for prolonged period of time.
Self-expanding medical prostheses frequently referred to as stents are well known and commercially available. They are, for example, disclosed generally in the Wallsten U.S. Pat. No. 4,655,771, the Wallsten et al. U.S. Pat. No. 5,061,275 and in Hachtmann et al., U.S. Pat. No. 5,645,559. Stents are used within body vessels of humans for a variety of medical applications. Examples include intravascular stents for treating stenoses, stents for maintaining openings in the urinary, biliary, tracheobronchial, esophageal, and renal tracts, and vena cava filters.
The implantation of an intraluminal stent will preferably cause a generally reduced amount of acute and chronic trauma to the luminal wall while performing its function. A stent that applies a gentle radial force against the wall and that is compliant and flexible with lumen movements is preferred for use in diseased, weakened, or brittle lumens. The stent will preferably be capable of withstanding radially occlusive pressure from tumors, plaque, and luminal recoil and remodeling.
A delivery tool which retains the stent in its radially compressed state is often used to present the stent to a treatment site through tracts, lumens or vessels within the body. The flexible nature and reduced radius of the radially compressed stent enables delivery through relatively small and curved tracts, lumens or vessels. In percutaneous transluminal angioplasty, an implantable endoprosthesis is introduced through a small percutaneous puncture site, airway, or port and is passed through various body vessels to the treatment site. After the stent is positioned at the treatment site, the delivery tool is actuated to release the positioned stent. The stent is allowed to self-expand within the body vessel. The delivery tool is then removed from the patient. The stent remains in the vessel at the treatment site as an implant. Typically the delivery tool is designed for single use and so it is thrown away.
Stents must exhibit a relatively high degree of biocompatibility since they are implanted in the body. An endoprosthesis may be delivered into a body tract, vessel or lumen on or within a surgical delivery tool as shown in U.S. Pat. No. 4,954,126 and 5,026,377. Preferred delivery tools for the present invention may include modifications of those delivery tools so that there cooperate and interact with the present invention.
Commonly used materials for known stent filaments include Elgiloy and Phynox metal spring alloys. Other metallic materials than can be used for selfexpanding stent filaments are 316 stainless steel, MP35N alloy, and superelastic Nitinol nickel-titanium. Another self expanding stent, available from Schneider (USA) Inc. of Minneapolis, Minn. has a radiopaque clad composite structure such as shown in U.S. Pat. No. 5,630,840 to Mayer. Self-expanding stents can be made of a Titanium Alloy. The strength and modulus of elasticity of the filaments forming the stents are also important characteristics. Elgiloy, Phynox, MP35N and stainless steel are all high strength and high modulus metals. Nitinol has relatively low strength and modulus but includes temperature dependent self expanding or superelastic properties that have benefits.
There is continued growth in procedures and applications of self-expanding stents with particular characteristics for use in various medical indications. Stents are needed for implantation in an ever increasing list of lumens and vessels throughout the patient's body. Different physiological environments are encountered and it is recognized that there is no universally acceptable set of stent characteristics.
High health care costs demand medical devices that can be sterilized and reused but heretofore stent delivery instruments were supplied by their manufacturers loaded with a stent and thus prepared for a single use and then disposal. That approach was acceptable for the introduction of stent vascular and lumenal surgery but was not cost effective. The need for equipment and techniques for loading stents into a delivery tool has not been addressed so that medical practitioners can do so in the preoperating room environment. Moreover the use of a sterilizable reusable delivery tool depends on an easy and effective loading device and fool proof method of use.
SUMMARY of the INVENTION
A device for loading a self expanding stent into a deployment tool may have an outer tube defining a space. The device might include a constricting sheath with a stent delivery end and a stent receiving opening opposite thereto. The constricting sheath is preferably open therethrough with the stent delivery end and the stent receiving opening aligned along an axis thereof. There is an outer tube on the deployment tool. The stent delivery end is most preferably shaped and sized for slipping over the outer tube. The stent receiving opening might be shaped and sized to receive a self expanding stent aligned along the axis and in its expanded state. A rest within the delivery end can possibly be located for seating the constricting sheath along the axis and in position over the outer tube. A funnel is preferably positioned within the constricting sheath located between the stent delivery end and the stent receiving opening. The funnel is most preferably shaped for collapsing the self expanding stent before loading into the space of the outer tube. An inserter may be depressed for movement along the axis and within the constricting sheath towards the space. The inserter could have a stent carrying shaft to support the expanded stent thereabout and cantilever therefrom. A shoulder on the stent carrying shaft engages the expanded stent for most preferably urging the expanded stent into the constricting sheath as the inserter moves towards and into the funnel of the constricting sheath. A method for using the device includes the steps of slipping over the outer tube, seating the constricting sheath along the axis and in position over the outer tube and against the rest, collapsing the self expanding stent before loading into the space of the outer tube in the funnel, carrying the stent on the stent carrying shaft cantilever therefrom, depressing the inserter for movement along the axis and within the constricting sheath towards the space of the outer tube, and engaging the stent with the shoulder for urging the expanded stent into the constricting sheath as the inserter moves towards and into the funnel.
Using a deployment tool with the handle in the deployed position, the constricting sheath is slipped over the deployment tool outer tubing until tubing rests against sheath. By depressing device inserter towards deployment tool, the device moves towards and into a necked down funnel section of the constricting sheath and comes in contact with an inserter stop. The device pushes the inserter back into the outer tubing and device is gripped between outer tube and inserter tube is retracted drawing device into outer tubing. When collapsible device is completely inside outer tube, the constructing sheath may be removed and the device is ready for deploying.


REFERENCES:
patent: 5382260 (1995-01-01), Dormandy, Jr. et al.
patent: 5476472 (1995-12-01), Dormandy, Jr. et al.
patent: 5582619 (1996-12-01), Ken
patent: 5630830 (1997-05-01), Verbeek
patent: 5676671 (1997-10-01), Inoue
patent: 6126685 (2000-10-01), Lenker et al.
patent: 6132471 (2000-10-01), Johlin, Jr.
patent: 6143021 (2000-11-01), Staehle
patent: 6156063 (2000-12-01), Douglas
patent: 6190393 (2001-02-01), Bevier et al.
patent: 6197046 (2001-03-01), P

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and device for loading a stent does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and device for loading a stent, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for loading a stent will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2925197

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.