Method and device for inspecting objects

Optics: measuring and testing – Inspection of flaws or impurities – Surface condition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S237500

Reexamination Certificate

active

06496254

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention generally relates to a method and device for contactless inspection of objects on a substrate, during relative motion between the substrate and the inspection device.
2. Description of Background Art
When arranging objects on a substrate geometrical and other properties of the objects are important for the performance of the resulting product. Consequently, it is desired to be able to quickly and accurately perform an automatic inspection of these properties. Geometrical properties can for example be volume, position on the substrate, diameter, shape of outline, scratches, surface roughness etc. Other properties can be, colour, etc. An automatic inspection of the properties is difficult to perform at high speed and high accuracy. For example, in the process of applying solder paste to the substrate, by dispensing it or the like, the properties of the resulting solder paste deposit, e.g. volume and position, are important for the subsequent process steps and final yield.
Prior art is generally based on different imaging technologies such as 2-dimensional image processing, pattern recognition and/or 3-dimensional optical triangulation, stereo photography, moiré methods and white-light interferometry.
For obtaining height information of an object, laser triangulation is often used, such as in an apparatus and a method for inspecting solder printing as disclosed in U.S. Pat. No. 5,134,665. A radiation source, generally a laser, is positioned at a lateral distance from a sensor and illuminating the object to be inspected from one direction. The object is imaged onto the sensor via a radiation focusing element, such as refractive optics. The most common triangulation methods employ illumination with a single spot, a sheet-of-light or multistrip-light triangulation. The sensor views the object from another direction than the object is illuminated from and, thus, detects radiation reflected or reemitted from the object. Since the sensor is two-dimensional and since the positions of the radiation source and the sensor and the base plane for the object are known, it is possible to determine the height of the object by determining the direction of the radiation incident on the sensor.
Additionally, by scanning the whole object and determining a large number of height points or height profiles it is possible to determine an approximate volume of the object.
However, there are problems associated with prior art methods and devices. It is desired to combine speed and flexibility in one and the same arrangement. Generally, prior art methods and devices are dedicated to a single task and often they are not fast enough to comply with current and future demands.
In the above mentioned U.S. Pat. No. 5,134,665 there is disclosed an apparatus for inspecting solder paste prints on a printed circuit board (PCB), which is one type of substrate. Other types of substrate are for example substrates for ball grid arrays (BGA), chip scale packages (CSP), quad flat packages (QFP), and flip-chips. The apparatus measures print deviation, film thickness and print pattern of solder paste printed on pads formed on the PCB. A height measurement is performed by means of a laser ray illuminating the PCB pointwise. By mutually moving the apparatus and the PCD the laser point is scanned over a single solder paste object. By scanning the object in orthogonal X- and Y-directions the projection of the object is obtained in the form of an X-direction and a Y-direction profile line showing both the solder paste object and the underlying pad. By this known apparatus the positions and thicknesses of screen printed solder paste objects in relation to pre-printed pads are determinable. Drawbacks of this known apparatus are the limited use thereof. For example, neither accurate volume measurements nor accurate area measurements are performable, at least not reasonably fast, since this would require a vast number of scans in both directions.
Another solution dedicated for inspection of solder paste prints on a PCB is an apparatus manufactured by Philips called TriScan. The TriScan apparatus uses an advanced optical scanning system comprising a 20-side polygonal mirror rotating at a very high speed of up to 50 revolutions per second. A laser ray is projected onto the mirror and thereby a laser point is swept over the object at a rate of up to 1000 light sweeps per second. By advanced sets of mirrors the object is illuminated by said sweeps and reflected light is caught and guided to a sensor. While this apparatus enables several types of properties to be inspected at high speed it is complex and performs only measurements of height profiles as a basis for all determinations. The limitations to height profile measurements causes a limited accuracy. By measuring the profiles extremely closely, a certain improvement of accuracy may be obtained, However, this requires a high speed of measurement, which is difficult to achieve.
SUMMARY OF THE INVENTION
One object of this invention is to provide an inspection device for inspection of objects on a substrate during relative motion between the device and the substrate, and a method for inspection of objects on a substrate by means of such an inspection device, wherein said device and said method in an improved way combine inspection accuracy and a multiple task capability at high speed and low cost.
In one aspect the present invention relates to a method for contactless inspection of objects on a substrate, by means of an inspection device during relative motion between the substrate and the inspection device. The method comprises the steps of:
generating a first image comprising object height information by illuminating at least a portion of the substrate comprising one or more objects by means of first radiation means and imaging at least one of said one or more objects illuminated by said first radiation means onto a two-dimensional matrix sensor means having a portionwise addressable matrix of pixel elements;
generating a second image comprising object area information by illuminating at least a portion of the substrate comprising one or more objects by means of second radiation means and imaging at least one of said one or more objects illuminated by said second radiation means onto said sensor means;
extracting the object height information, by means of said sensor means, from said first image; and
extracting the object area information, by means of said sensor means, from said second image.
In another aspect the invention relates to a device for performing the above method. The device comprises a two-dimensional matrix sensor means having a portionwise addressable matrix of pixel elements; a first radiation means; a second radiation means; and imaging means for imaging radiation originating from an object plane onto the sensor means. Said first radiation means is arranged for illuminating at least a portion of the substrate comprising one or more objects, when the substrate is in said object plane, said imaging means thereby generating a first image of at least one of said one or more objects, said first image comprising object height information. Said second radiation means is arranged for illuminating at least a portion of the substrate comprising one or more objects, when the substrate is in said object plane, said imaging means thereby generating a second image of at least one of said one or more objects, said second image comprising object area information. Said sensor means comprises extraction means for extracting, from said first image, object height information, and for extracting, from said second image, object area information.
The generation of a first and a second image used for extracting object height information and object area information respectively in combination with employment of a matrix sensor means having a portionwise addressable matrix of pixel elements provides for an efficient and flexible use of the generated image information for inspecting and determining properties of the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and device for inspecting objects does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and device for inspecting objects, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for inspecting objects will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2944673

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.