Method and device for inspecting laminated iron cores of...

Electricity: measuring and testing – Fault detecting in electric circuits and of electric components – Of individual circuit component or element

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C324S233000, C324S242000, C324S521000

Reexamination Certificate

active

06815957

ABSTRACT:

FIELD OF THE INVENTION
The invention relates to a method for inspecting laminated iron cores of electrical machines for interlamination shorts, in which the laminated iron core is magnetized by means of an auxiliary winding and the iron surface is scanned by means of a measurement coil arrangement with a downstream measurement device.
The invention also relates to an apparatus for carrying out the method, and to a computer program for data evaluation.
BACKGROUND OF THE INVENTION
Laminated iron cores, in particular of electrical machines, are frequently inspected for interlamination shorts during production and in the course of maintenance work during operation, using the measurement method of stator laminate ring excitation with rated induction. This method which indicates the effect of interlamination short currents in the form of local temperature differences, demands a powerful voltage source which can be regulated, and field windings with large cross sections (so-called hot spot method using, for example, infrared cameras). In the case of stators with built-in winding bars, this inspection can identify only those fault points (short circuit between a number of laminates) on the tooth surface, and not the laminate faults in the slot base or on the slot sides. This method identifies only interlamination shorts with a specific contact resistance and resultant local temperature differences, and hence not all interlamination short points. The temperature increase on its own is not sufficient for quantitative assessment of the interlamination short point. However, quantitative assessment of these fault points is worthwhile since, in the end, the volt-amperes in a fault point are a critical criterion for determining whether such a region is able to initiate so-called “core melting”, that is to say melting occurring during operation as a result of excessive heating at the fault point.
U.S. Pat. No. 5,321,362 describes a so-called low-induction method for determining the short-circuit currents at interlaminate contacts, in which the laminated core is first of all weakly magnetized using a coil placed around the laminated stator core, and the stray field on the laminated core is then measured using a measurement coil arrangement. This method has the advantage that it does not require such high induction currents and, furthermore, it is possible to localize not only fault points that are located on the tooth surface. In this case, it is also possible to identify fault points which are not heated at that time during the method mentioned above, and the measurement process can be carried out with the rotor installed. U.S. Pat. No. 5,321,362 is in this case based exclusively on a current measurement, and therefore does not make it possible to draw any reliable conclusion with regard to the volt-amperes flowing in the fault point.
Secondly, CH 676526 A5 describes a method in which fault points can be localized not only on the tooth surface but also in the slot base and on the slot sides, and in a quantitative manner, as well. This is once again a low-induction method, but in this case it is not simply the current that is measured, but a reference measurement is also proposed, which allows the volt-amperes flowing in a fault point to be determined directly and quantitatively, by appropriate back-calculation.
One fundamental problem in the context of such low-induction methods is the fact that they frequently do not allow unique localization of fault points, since differences in the behavior of the magnetic iron core (for example resulting from cooling slots) can also lead to signals which, with these methods, may possibly also be interpreted as fault points.
SUMMARY OF THE INVENTION
One object of the present invention is therefore to propose a method for inspecting laminated iron cores of electrical machines for interlamination shorts, in which method the laminated iron core is magnetized by means of an auxiliary winding and the iron surface is scanned by means of at least one measurement coil arrangement with a downstream measurement device, and which allows fault points, that is to say any interlamination shorts which may be present, to be localized as uniquely as possible.
The object is achieved in that both the phase and the amplitude of the electrical signal which is induced in the at least one measurement coil arrangement are used in combined form to localize interlamination shorts. Thus, in contrast to the methods according to the prior art, not only the amplitude or not only the phase is used to localize the interlamination shorts, but the phase and amplitude information is used in a combined manner to identify them.
This is because, surprisingly, it has been found that the amplitude and phase when combined, that is to say effectively considering the vector of the current induced in the measurement coil arrangement, allow unique localization of the interlamination shorts, and in a quantitative manner as well.
According to a first preferred embodiment of the present invention, an interlamination short is identified in that a real part of the induced electrical signal occurs which is high in comparison to the intact regions. Specifically, it has been found that such a high real part actually uniquely characterizes those fault points, that is to say regions, at which individual laminates are connected to one another via a short circuit. In this case, this high real part can preferably be determined in particular by means of a polar representation.
The direction which in this context is referred to as the “real part” is, so to speak, a “pronounced direction” and is defined, for example, by the embodiment described further below, in which a reference is fed in using a calibration current coil (loop) with an appropriate width and with an appropriate laminate current.
According to a further preferred embodiment of the invention, the method can be combined with a gradient measurement, that is to say with a measurement which also allows unique and quantifiable localization of the fault point in the radial direction with respect to the stator. This is done by arranging at least one further measurement coil arrangement radially at a distance, which further measurement coil arrangement is electrically isolated from a first measurement coil arrangement but is mechanically connected to the fist measurement coil arrangement, and by using both the phase and the amplitude of the at least two electrical signals, which are induced in the at least two measurement coil arrangements, to localize interlamination shorts, in particular to localize them in the radial direction.
Another preferred embodiment is characterized in that the induced electrical signals are compared with signals which correspond to the interlamination short currents, with a loop with an appropriate width being mounted on the surface of the laminated iron core as a reference for this purpose, and being fed with an appropriate interlamination short current. This method allows quantification of the fault points, that is to say, in particular, it allows determination of the volt-amperes which effectively flow in a fault point. It is thus possible to detect the actual fault points with reference to any possible “core melting”.
The auxiliary winding for magnetization of the laminated iron cores can, according to a further preferred embodiment, be provided such that the laminated iron core is magnetized in particular via the rotor shaft from a high-power supply source which is connected between the two machine sides, in particular on the insulated shaft. In this case the laminated iron core is preferably magnetized in the range from 0.03 to 0.7 Tesla, in particular approximately 0.1 Tesla, with a voltage of 220/110 volts at 50/60 Hz.
In a further preferred embodiment of the present invention, the at least one measurement coil arrangement, or in the case of a gradient measurement the at least two measurement coil arrangements, is or are shifted on the laminated iron core in the axial direction. In this case, the induced signals are determi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and device for inspecting laminated iron cores of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and device for inspecting laminated iron cores of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for inspecting laminated iron cores of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3325933

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.