Method and device for impregnating fiber bundles with resin

Coating apparatus – Solid member or material acting on coating after application – Running length work

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C118S420000, C118S411000

Reexamination Certificate

active

06387179

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to the manufacture of composite materials. More particularly, the invention relates to manufacture of composites made of reinforcing fibers imbedded in a curable resin.
Traditionally, fiber bundles have been impregnated with a selected resin by drawing bundles of the fiber through an open bath containing the resin in solution and then subjecting the wetted fiber bundles to a curing process. However, there are several difficulties associated with an open bath type impregnation process. These difficulties include the formation of voids when air is trapped between the resin and the fibers, encapsulation rather than impregnation of the fibers by the resin, entrainment of air in the resin solution, the hazardous conditions created by the use of highly volatile solvents, slow fiber bundle take-off speeds and the lack of control over the fiber to resin content of the product.
Alternatively, resin impregnation can be accomplished in an enclosed chamber to contain the volatile solvent compounds and to prevent air from being entrained in the resin bath solution. However, the use of an enclosed chamber does not prevent the formation of voids that detract from the quality of the composite product. Further, the use of an enclosed bath alone does not provide any additional control over the ratio of fiber to resin in the final product. Additional developments that have been intended to overcome these latter difficulties include the use of rollers and tapered openings to compress the resin into the fiber bundles. Further, enclosed bath type systems have been modified to be operated under reduced pressure to facilitate the removal of air that might otherwise be entrapped and create voids in the cured product.
The prior art has attempted to remove encapsulated air pockets from the impregnated fiber bundles through the manipulation of the pressure on those bundles and various mechanical means for pressing the resin into the bundles. As noted above, several attempts have been made to impregnate the fiber bundles under vacuum so that less air is available for creating voids. Further rollers have been used to press excess resin into the fiber bundles.
Japanese Patent Application Number 51039769, entitled “Fiber Reinforced Plastic Mouldings” and Japanese Patent Specification Number 52117966, entitled “Fiber Bundles Continuous Impregnation with Resin” both disclose the use of a enclosed resin bath that is operated under reduced pressure. The fiber bundles are drawn into the enclosure and redirected through the resin bath by guide rollers. These disclosures emphasize the use of rollers for pressing excess resin into the fiber bundles. The impregnated fiber bundles are then drawn out of the enclosure through a thin slot which maintains the vacuum and removes excess resin. A primary difficulty with these types of systems is that the physical manipulation of the fiber bundles during impregnation, whether through the use of guide rollers or contact between the fiber bundles and the walls of a narrowed opening, causes breakage and or fraying of the fibers. Broken and frayed fibers are to be avoided since they will foul and clog an impregnation device requiring significant operational down time during cleaning and system preparation. In addition, damaged fiber bundles will not be uniform and will produce a poor quality composite material. Therefore, it is preferred to minimize, and if possible to eliminate, contact with or manipulation of the fiber bundles during their impregnation.
Another prior art device which uses reduced pressure to prevent or remove air pockets from the impregnated resin is disclosed in Japanese Patent Application Number [Kokai] 2-208021, entitled “Method of Manufacturing Fiber-Reinforced Plastic Forming Materials.” A view of the device of this application is shown in FIG.
1
. This application describes the use of multiple chambers in which the fiber bundles are in sequence subjected to heating, vacuum, a tapered slit and resin impregnation of the top half of the fiber bundles followed by repeated applications of vacuum, a tapered slit and resin impregnation of the bottom half of the bundles. The tapered openings have increasingly larger cross sectional areas as the impregnated fiber bundles pass downstream. The final tapered opening is used to determine the final amount of resin on the fiber bundles. It is claimed that perfect impregnation can be achieved by the method of impregnating the top and bottom halves of the fiber bundles separately and applying a pressure reduction treatment after each impregnation. However, it has been found that the use of reduced pressure treatments is less than satisfactory at achieving void-free resin impregnated fiber bundles, particularly at high fiber take-off rates. Rather, it has been discovered through the present invention that it is preferable to use positive pressure prior to and during resin impregnation to prevent and eliminate voids in the fiber bundles.
German Patent Application No. DE 2 824 376, entitled “Method of Impregnating Fibers,” discloses an enclosed resin bath. As shown in
FIG. 3
, degassed resin is pumped into the bath from below the fiber bundles. The fiber bundles are directed into and through the resin on guide rolls. Further, the fiber bundles are drawn through three downstream-tapering conical dies that compress the impregnated resin and encapsulated air. According to the specification of DE 2 824 376, encapsulated air “explosively” escapes as the fiber bundles exit the conical dies ripping the fiber bundles apart. Resin is pumped from the top of the bath and filtered to remove the air and free fibers before re-injection at inlets located upstream and below each of the conical dies. The impregnated fiber bundles are passed through a stripping die as they exit the resin bath housing.
Although DE 2 824 376 is directed at eliminating air pockets from the impregnated fiber bundles it does not address or attempt to prevent air from becoming entrapped. The use of guide rollers and stripping dies result in unnecessary contact with the impregnated fiber bundles that will damage the integrity of the bundles. Further, the use of the tapered structures to cause an “explosive” release of entrapped air will likewise cause damage to the bundles that will foul the stripping die and contaminate the resin bath.
Not unlike DE 2 824 376, German Patent Application No. D 4 121 200, entitled, “Method of Impregnating Fibers” describes using tapered slots to create an initial pressure on the fiber bundles that is quickly released in order to release entrapped air. Shown in
FIG. 2
, DE 4 121 200 discloses a channel with a succession of tapered dies. The specification of DE 4 121 200 emphasizes that excessive pressure on the fiber bundles should be avoided to prevent breaking or otherwise damaging the fibers. Resin outlets between the dies provide means of releasing excess pressure by drawing excess aerated resin and loose fibers out of the channel. The resin and loose fibers are filtered and re-injected prior to the first tapered die. The specification asserts that air entrained with the resin escapes from the channel at the fiber inlet as the resin is re-injected into the channel. The last tapered die strips excess resin to control the final amount of resin that remains on the fiber bundles.
The disclosure of DE 4 121 200 does not suggest any means for preventing air from being encapsulated in the resin initially. To the contrary, it is doubtful that all of the air entrained in the recirculating resin will be given off at the fiber inlet as is suggested and that therefore, the device will re-inject aerated resin into the channel to be re-encapsulated with the fiber bundles. Secondly, the reliance on physical contact with the impregnated fiber bundles such as with a stripping die will have undesirable results on the integrity of the fiber bundles and the reliability of the impregnation apparatus.
European Patent Specification EP 0 542 709, entitled “Method and Apparatus For Making Com

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and device for impregnating fiber bundles with resin does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and device for impregnating fiber bundles with resin, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for impregnating fiber bundles with resin will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2884388

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.