Ordnance – Loading
Reexamination Certificate
1999-07-19
2002-03-12
Carone, Michael J. (Department: 3641)
Ordnance
Loading
C089S033020, C089S033170, C089S046000, C102S282000
Reexamination Certificate
active
06354183
ABSTRACT:
The present invention relates to a method and a device for use in gun magazines first and foremost in automatic-loading artillery guns for arranging and stowing modular charges, and for delivering the desired number and type of modular charge for each loading occasion that may involve different charge strengths such as different lengths and diameters but which are all enclosed in combustible outer casing of known type and which may be combined in the desired manner for each individual occasion to impart the correct performance to projectiles fired from the artillery gun.
It is already possible using artillery locating radar and other surveillance systems, for example, to determine rapidly and with high precision the location of an artillery gun that has opened fire. There is thus a good opportunity for an enemy to open effective counter-battery fire. The artillery has therefore more or less been forced to depart from its previously fairly stationary tactics in favour of significantly more mobile tactics involving rapid engagements in the form of short intensive fires followed by immediate redeployment to a pre-determined deployment site at a sufficiently safe distance from the previous one. These new tactics have resulted in an increased need for every gun to be self-propelled and capable of carrying at least a primary requirement of ammunition.
Originally, bag charges—more or less rigid propellant charges sewn into fabric bags or sacks—were used as propellant charges for artillery ammunition in which the propellant charge and projectile were not fixed together by means of a cartridge case at the moment of loading. Bag charges were difficult to use in fully automatic loading systems even though they could, by using a certain artifice, be automatically rammed.
Bag charges will gradually be replaced by combustible cases that are easier to load automatically. However, for the artillery of the future it is expected that different types of mutually combinable modular propellant charges enclosed in combustible, and preferably rigid outer casing, will in combination with each other provide charge units that are well suited to automatic loading. Since these modular charges may be of various sizes as well as consist of different types of propellant and, moreover, can be combined in various quantities it enables a very large freedom of choice when selecting projectile trajectory and time of flight for each individual round.
Because the modular charges of the above mentioned general type each constitute a rigid unit they are well suited to being handled mechanically in a fully automatic loading system, and the fact that in each specific case it is necessary to feed the correct number and types of modular charge makes such a dedicated loading system somewhat complex.
An example of a previous variant and a device for arranging propellant charges of the general type described herein for automatic loading is described in WO96/07865. The device described therein comprises a patemoster conveyor with many movable parts and a transport pendulum that has to change the angle of the stowed charge from vertical to almost horizontal before loading of the artillery gun in question could be effected. Furthermore, the device described therein can only handle modular charges of a limited number of lengths. In addition, consideration must be given in future artillery systems to the fact that the guns in question must be equipped with overall fragment protection which thus necessitates very compact systems.
The purpose of the present invention is to offer a new method and a new device for arranging and stowing and for supplying the desired quantity and types of modular charge of general type indicated above for each loading occasion. The distinguishing features of the method and device for the present invention are that one thereby achieves an enhanced stowage density for the modular charges with resultant larger capacity or more compact space requirement while the number of moving parts has been significantly reduced and handling routes simplified. Altogether this provides a larger magazine capacity and enables more rapid loading operations. Moreover, the device in the present invention can also handle modular charges of slightly different diameters.
Hallmarks of the present invention are how stowage is arranged of the modular charges necessary for composition into complete propellant charges and how the modular charge magazines are designed, as well as how the modular charges necessary for each complete propellant charge are collected from their respective locations in the magazine and how these are combined into a complete propellant charge plus the devices required for this.
The present invention enables modular charges of the same strength, i.e. containing the same type of propellant and being of the same length and diameter, to be stowed horizontally end-on-end in special magazine tubes arranged in groups around a parallel axis. Each such group—called a revolver magazine module—is revolvable around its own axis. This is to enable any magazine tube to revolve until aligned with the outfeed aperture for the magazine module in question. In the opposite end of the magazine tube from the outfeed aperture there is either an ejector for each magazine tube in the magazine module, or a common ejector for the revolver magazine module, by means of which the number of modular charges commanded can be ejected from the magazine tube in question.
The number of magazine tubes per revolver magazine module may vary but four magazine tubes should probably be an appropriate number. With, for example, four or more such revolver magazine modules arranged in parallel with each other and at such a distance from each other that the outfeed apertures of each revolver magazine module are available for one and the same transport device or outfeed unit by means of shifting between the outfeed apertures of each revolver magazine module, the transport device or outfeed unit can be made to fetch the various modular charges from each outfeed until the desired complete propellant charge has been assembled, after which directly, or via a special loading pendulum as an intermediate function, the complete propellant charge can be rammed in the artillery gun in question.
The present invention also includes several variants concerning how the number of modular charges is determined that on each individual occasion are retrieved from each magazine tube. The basic principle is that the number of modular charges to be retrieved from each magazine tube for each complete propellant charge shall be determined by the space made available on each retrieval occasion by the outfeed unit for receiving modular charges.
In the first variant the outfeed unit is in the form of several disks of identical size individually rotatable around a common axis, the thickness of each disk equating to the length of the shortest modular charge that is to be handled. The rotation axis of the disks is parallel to the revolver axis of the revolver magazine modules. Each disk has at least one aperture that accommodates one modular charge. By rotating the disks around the common axis all these apertures can be precisely aligned with each other, alternatively the alignment procedure can be discontinued so that the number of apertures aligned with each other can be varied from one to the maximum number of disks. Further, the apertures and common axis of the disks are so arranged relative to the outfeed apertures of the relevant magazine tubes that the apertures of the disks can be rotated in turn to align with the outfeed aperture of the relevant magazine tube. In this position the number of modular charges equivalent to the number of disk outfeed apertures aligned are pushed from the magazine tube apertures into the respective disk apertures by the co-ordinated ejector. Thus if the outfeed unit formed by the disk apertures aligned with each other is to receive a modular charge whose length corresponds to the length of several modular charges the corresponding number of
Bofors AB
Buckley Denise
Carone Michael J.
Connolly Bove & Lodge & Hutz LLP
LandOfFree
Method and device for handling propellant charges of... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and device for handling propellant charges of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for handling propellant charges of... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2821919