Method and device for exhaust gas after-treatment in an...

Power plants – Internal combustion engine with treatment or handling of... – Methods

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C060S286000, C060S295000, C060S303000

Reexamination Certificate

active

06209315

ABSTRACT:

BACKGROUND OF THE INVENTION
Field of the Invention
The invention lies in the automotive technology field. Specifically, the invention relates to an exhaust gas after-treatment process and device for an internal combustion engine equipped with an SCR catalyst. The system is applicable to internal combustion engines operating with excess air, in particular diesel internal combustion engines, using the selective catalytic reduction of nitrogen oxides from the exhaust gas. A reducing agent is delivered from a reducing agent container by a pump and, for specific operating states of the internal combustion engine, is apportioned to the exhaust gas of the internal combustion engine upstream of an SCR catalyst via a metering device.
Nitrogen oxide emissions from an internal combustion engine operating with excess air, in particular a diesel internal combustion engine, can be reduced with the aid of selective catalytic reduction (SCR) technology to form atmospheric nitrogen (N
2
) and water vapor (H
2
O). The reducing agent used is either ammonia gas (NH
3
), ammonia in aqueous solution, or urea in aqueous solution. The urea is used in this case as an ammonia carrier and is injected with the aid of a metering system upstream of a hydrolysis catalyst into the exhaust system, and converted there by means of hydrolysis into ammonia which then in turn reduces the nitrogen oxides in the actual SCR or DeNO
x
catalyst.
In prior art metering systems, pumps produce the required injection pressure. The pressure is maintained constant by a pressure regulator. In order to meter the reducing agent, electromagnetically actuated valves, as are known for fuel injection, are used. The quantities of reducing agent to be metered in proportion to the distance traveled correspond to a few percent of the relevant quantity of fuel. In other words, the amounts to be delivered by the pump are relatively small. In known metering systems, the electrically driven pump delivers the reducing agent via a pressure regulator in the loop. Using these pumps for the necessary pressure range, many times the required quantity of reducing agent is delivered, and available pressure regulators require, in order to function according to specification, delivered quantities which are many times the metered quantity. The pressure regulator limits the pressure to a constant value, so that the metered quantity can be controlled through a valve opening time dictated by a control device. A reducing agent circuit of this type has the disadvantage that the continuously running pump consumes an unnecessarily large amount of drive energy and must be designed for long life.
Further, in urea SCR systems of this type, it is necessary to monitor the metered quantities of reducing agent since, on the one hand, conventional gas sensors are too inaccurate to reliably record metering errors and, on the other hand, the storage capacity of the catalyst would delay the detection of an error in metering based solely on exhaust gas measurement. In a continuously running pump which provides a constant pressure by virtue of a pressure regulator, the metered quantity cannot be measured, since the quantity flowing through the pressure regulator back to the storage container for the reducing agent is many times the metered quantity. A further problem with such metering devices consists in the fact that the metering accuracy of available cost-effective solenoid valves decreases, as the drive times become small, to such an extent that it is not possible to meter with enough resolution in particular operating states.
German utility model DE 297 08 591 U1 discloses a device for feeding ammonia to the exhaust gas flow of a combustion engine. There, a heatable pressure-proof converter, which contains a thermolytically ammonia-releasing substance, or a thermolytically ammonia-releasing mixture of substances, is used as the ammonia source. An ammonia accumulator for intermediate storage of ammonia released from the material by supplying heat is connected upstream of the metering device for the ammonia. The metering device receives control signals from a control unit which processes the data characteristic of the running of the engine, from which it determines the NO
x
emission.
2.Summary of the Invention
It is accordingly an object of the invention to provide an exhaust gas after-treatment process and device for an internal combustion engine equipped with an SCR catalyst, which overcomes the above-mentioned disadvantages of the heretofore-known devices and methods of this general type and which allows metering small quantities of reducing agent and, at the same time, presents an opportunity to check the metering system in terms of its functional integrity.
With the foregoing and other objects in view there is provided, in accordance with the invention, a method of after-treating exhaust gas of an internal combustion engine operating with excess air, in particular a diesel engine, wherein nitrogen oxides in the exhaust gas are reduced by selective catalytic reduction. The method comprises the following steps:
pumping a reducing agent from a reducing agent container into a pressure accumulator;
delivering, during specific operating states of an internal combustion engine, quantities of the reducing agent to an exhaust gas of the internal combustion engine upstream of an SCR catalyst, by opening a metering device and taking a quantity of reducing agent currently required for exhaust gas after-treatment from the pressure accumulator; and
wherein the pumping step comprises delivering only a quantity of the reducing agent required by the metering to the pressure accumulator.
In accordance with an added feature of the invention, a pressure in the pressure accumulator is determined with a pressure sensor and a metered amount of reducing agent is deduced from a pressure difference before and after a respective metering phase.
In accordance with an additional feature of the invention, the metered amount of reducing agent is evaluated from a characteristic curve in dependence on the measured pressure values. In a preferred embodiment, the characteristic curve is stored in a memory of a control unit for exhaust gas after-treatment.
In accordance with another feature of the invention, the metering system is checked for leaktightness during pauses between metering in which no reducing agent is added.
In accordance with a further feature of the invention, after an end of a metering pulse, a pressure is measured in the pressure accumulator, and, after a predetermined period of time has elapsed, it is determined whether the pressure in the pressure accumulator has fallen below a predetermined limit value, and if the pressure has fallen below the limit value, the metering system is classified as not being leaktight.
In accordance with again an added feature of the invention, a pressure in the pressure accumulator is sensed with a pressure sensor, and, when the pressure falls below a lower pressure threshold value, the pump is turned on, and when the pressure exceeds an upper pressure threshold value, the pump is turned off.
In accordance with again an additional feature of the invention, a drive time of the pump is measured during which the pressure lies between the lower and upper pressure threshold values and the drive time is used as a criterion for a functionality of the pump.
In accordance with again another feature of the invention, a charging and discharging time of the pressure accumulator is measured and the charging and discharging time is used as a criterion for the functionality of the pressure accumulator.
In accordance with a preferred embodiment of the invention, the pressure accumulator used in the method is a flexible line connecting the pump to the metering device.
With the above and other objects in view there is provided, in accordance with the invention, an exhaust gas after-treatment device for an internal combustion engine operating with excess air, in particular a diesel engine, wherein nitrogen oxides in the exhaust gas are reduced by selective catalyti

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and device for exhaust gas after-treatment in an... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and device for exhaust gas after-treatment in an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for exhaust gas after-treatment in an... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2458935

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.