Method and device for controlling the number of ions in ion...

Radiant energy – Ionic separation or analysis – With sample supply means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S282000

Reexamination Certificate

active

06555814

ABSTRACT:

The invention relates to a method and a device for controlling the number of ions in ion cyclotron resonance (ICR) mass spectrometers, whereby the ions enter a multipole ion guide after their formation and are stored there temporarily. By measuring the ion number in a predefined subset of these temporarily stored ions, the number of ions transferred into the ICR trap for mass spectrometric analysis is regulated.
PRIOR ART
Conventional methods of ionizing the substances for mass spectrometric analysis such as electron impact, cannot be applied to large organic or biomolecules. These species can neither be transferred into the gas phase by thermal energy supply without being decomposed, nor can they be ionized by electron impact without being fragmented. Contemporary mass spectrometry very frequently uses electrospray or matrix assisted laser desorption ionization (MALDI), which offer much milder ionization conditions to the large molecules.
Electrospray ionization is probably the most frequently used ionization method for the large molecules. A review article about the mechanism of the electrospray ionization was published by P. Kebarle and L. Tang in “Analytical Chemistry” 65, 972A-986A (1993). Using this method ions are generated at atmospheric pressure under the influence of high voltage (3-6 kV) between an electrospray needle and a counter electrode. Although the spray process is often supported by a slow and fine adjustable syringe pump, the separation of the small charged droplets as a result of the high ion density on the liquid surface (Coulomb repulsion) is the primary driving force of the spray process. A “drying gas that flows in counter current to the flight of the charged droplets leads to the evaporation of the solvent (desolvation process) and thus to the reduction of the droplet radii. Due to the increasing Colulomb repulsion forces the ionized molecules are evaporated and often multiply protonated. These ions are transferred through a capillary through a multi-stage vacuum system and through a multipole ion guide into the mass spectrometer for measurement. Electrospray ionization at atmospheric pressure has dramatically simplified linking separation methods, such as liquid chromatography or capillary electrophoresis, directly to the mass spectrometry.
Laser desorption ionization (LDI) has long been used to successfully transfer large organic molecules into the gas phase and to ionize them. A special kind of LDI is the matrix assisted laser desorption ionization (MALDI). The review article by E. J. Zaluzec, D. A. Gage, J. T. Watson in Protein Expression and Purification 6,109-123 (1995) reports about MALDI applications for characterization of proteins and peptides. A MALDI paper by H. J. Räder and W. Schrepp about the analysis of synthetic polymers with the aid of time of flight mass spectrometry can be found in Acta Polymer. 49, 272-293 (1998).
In MALDI the analyte molecules are mixed with a so-called matrix. The molar ratio of the matrix to the analyte is usually 1:10
2
to 1:10
4
. The energy of the laser beam is absorbed by the matrix molecules and transferred to the analyte molecules. The latter thus obtain the necessary energy to transition in the gas phase and become thereby partially ionized. The ionization mostly happens in form of a proton acceptance. Compounds that are used as matrix are mostly proton donors. In special cases, alkaline metal salts or silver salts can be used as additives in order to achieve a corresponding metal ion attachment.
In classical cases of MALDI time of flight mass spectrometry, ions are extracted out of the source region using a high voltage pulse and accelerated into the flight tube. Contrary to the MALDI time of flight mass spectrometry, in high RF ion traps (Paul traps) and electromagnetic ion traps (Penning traps, ion cyclotron resonance and Fourier transform ion cyclotron resonance mass spectrometry) one wants to generate low-energy ions, in order to be able to capture them in the corresponding ion trap without sustaining any losses. Consequently, ions are not accelerated to energies of several kilo electron volts.
In the low energy extraction of MALDI generated ions, the variation of excessive energy gets more evident and causes difficulties even during capturing these ions. It leads to a considerable fluctuation of the generated mass signals and therefore to irreproducible analytical results. A low voltage MALDI ion source is described by A. N. Krutchinsky, A. V. Loboda, V. L. Spicer, R. Dworschak, W. Ens, K. G. Standing in “Rapid Communications in Mass Spectrometry” 12, 508-518 (1998), where the ions are desorbed directly into a quadrupole. Since the ions are practically formed in the quadrupole they are efficiently captured. However, the ions are here not collected and trapped in the quadrupole. The quadrupole is here used solely as an ion guide in order to transfer ions into the time of flight mass spectrometer.
One of the important differences between ion trap mass spectrometry and ion transmission mass spectrometry is caused by the limited ion storage capacity of the ion traps. Overloading an ion trap is as undesirable as having insufficient number of ions. Methods for controlling the number of ions in RF traps are described in the patents U.S. Pat. No. 5,107,109, DE 43 26 549. These patents describe a controlled generation of ions by electron impact in the trap by regulating the ionization time of the analyte molecules. In the first case the number of ions is determined by a pre-measurement of the ion charge in the trap and regulated in the immediately following measurement. In the second patent, the actual value of the number of ions is extrapolated from integration of several of the preceding mass spectrometric measurements and used for the control. The patent U.S. Pat. No. 5,739,530 also describes a controlled ion filling from a multipole ion guide system to quadrupole ion traps.
The pulsed generation of ions by MALDI or LDI shows fundamental differences from ion formation in a continuous-operating ion source. In this case, the ionization is triggered by individual laser pulses, which transfer the small molecules in a crystalline (or liquid) matrix into the gas phase and ionize them in part. During every laser pulse the surface of the sample is also modified and rearranged, small cradles formed, while part of the matter is eroded from the surface. As a result the “ion picture” of the next laser pulse is not necessarily a reproduction of the one from the preceding pulse. That is, the number of ions transferred into the gas phase, as well as the intensity ratio of analyte ions to the matrix ions can vary significantly from laser pulse to laser pulse. Consequently, a varying space charge is caused in the trap.
The determination of the ion mass in the FTICR trap is performed by a frequency measurement. Due to the space charge in the trap, this frequency shifts. Therefore, a “reduced cyclotron frequency” is measured, which depends on the strength of the space charge. The publication of J. B. Jeffries, S. E. Barlow and G. H. Dunn, International Journal of Mass Spectrometry and Ion Processes 54, 169-187, (1983) describes these space charge mass shift effects theoretically. If the number of ions varies from scan to scan and are not regulated, this can cause each time a corresponding shift in the mass signal.
At high ion densities, another undesirable phenomenon appears, the so called “peak coalescence”. Signals of ions with a very small mass difference, approach to each other and finally coalesce. The product of this coalescence is usually another sharp peak. In MALDIFTICR mass spectrometry peak coalescence phenomena are frequently observed due to uncontrolled number of ions which are transferred to the ICR trap.
If several scans have to be added up in order to increase the signal-to-noise ratio, these frequency shifts lead to problems. The varying number of ions of two consecutive ionization processes (e.g. MALDI) produces a varying space charge and varying mass shifts in each acquired spectrum. When adding up spe

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and device for controlling the number of ions in ion... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and device for controlling the number of ions in ion..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for controlling the number of ions in ion... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3100382

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.