Method and device for accommodating a cell culture

Chemistry: molecular biology and microbiology – Apparatus – Bioreactor

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S305200, C435S305300, C435S305400, C435S288300

Reexamination Certificate

active

06468788

ABSTRACT:

For treating or examining cells in molecular biology or genetic engineering, devices are used which consist, on the one hand, of a vessel (for example a Petri dish) for receiving the cells and a reaction liquid, and, on the other hand, of a cover (“Lab-Tek II” brochure from Nalge Nunc International, Naperville; “EasiSeal” brochure from HYBAID Limited, Teddigton; “Gene Frame” brochure from Advanced Biotechnologies Ltd., Epsom; EP-A 611 598). A distinction must be made here between covers which are simply placed loosely on the upper edge of the vessel and airtight lids which are connected adhesively and airtight to the edge of the device or to a slide forming the base of the device. When the latter covers are applied, care must be taken to ensure that air bubbles are avoided between the lid and the substrate. This is generally done by means of some of the reaction liquid being displaced towards the side as the flat lid is being applied. However, this is only possible if the vessel has no walls. As these are desired in certain process stages, walls are provided which can be tightly connected to and detached from the base (slide) of the device. In the known devices mentioned above, the possibility of removal of the walls is also provided because a substrate layer which is so thin that the temperature changes needed during the process can be effected quickly and with precision control can be easily produced with a flat lid.
Vessels with vertical walls are also known in which a thin substrate layer is produced by means of a cover being lowered partially into the vessel (U.S. Pat. No. 4,294,924; U.S. Pat. No. 4,321,330; DE-A-196 24 917). The thin substrate layer is enclosed between a base of the cover and the base plate of the vessel. The cover is inserted into the vessel, with air and excess liquid being displaced. This makes tight closure difficult.
The invention is based on the object of providing a method and a device which permit the optionally thin-layered substrate to be sealed off even in cases where walls are present. The solution lies in the features of claims
1
and
2
.
When the cover is being introduced between the walls of the vessel, the air situated above the substrate in the vessel is displaced through the outflow opening. A possible excess amount of reaction liquid is also displaced through the outflow opening. The cover can be lowered inside the vessel until the desired thickness of the substrate layer is achieved between the base plate of the vessel and the opposite cover base, which desired thickness can range from several hundredths of a millimetre to several millimetres.
In order to avoid undesired clearance, the circumferential surface of the cover can fit closely, with an essentially identical shape, to the internal surface of the walls. This fit can also constitute the sealing of the cover with respect to the walls, for example by means of a ground-glass joint or a plastic seal under elastic pressure. However, this does not need to be the case, since, in addition to a close, but not tight fit of the circumferential surface of the cover to the internal surface of the walls, a special seal can be provided which can cooperate, for example, with the edge of the vessel walls or a shoulder thereof. In these cases it is often expedient to provide a holder for maintaining the sealing position of the cover with respect to the vessel, for example a screw-on, snap or spring closure; however, the tight fit of the cover on the vessel walls can also be self-supporting, for example as a result of the frictional forces which exist between two ground-glass surfaces.
It is expedient for the lower surface of the cover base to extend approximately parallel to the base of the vessel in order to be able to achieve an essentially constant layer thickness. The cover and the vessel can be provided with -cooperating contact surfaces which define the size and constancy of the layer thickness.
The outflow opening can be provided with a closure device. However, the possibility also exists of providing sealing by means of a subsequently applied oil layer. This also applies to the circumferential sealing. In many cases a tight seal is only required in respect of the external atmosphere in order, for example, to avoid evaporation or the admission of oxygen. In these cases it may suffice if the seal is formed not on the vessel and cover, but is instead formed by an apparatus which receives the device, for example a type of autoclave in which there is an internal atmosphere which is chosen in accordance with the intended purposes. To avoid evaporation, for example, it can have sufficient moisture. To avoid admission of harmful gases, it can consist of nitrogen or noble gas.
To ensure that it is not only the air in the area of the outflow opening that is removed, but also that air quantity which may be contained between the circumferential surface of the cover and the vessel walls, it is possible for the outflow opening to be provided with an ascending section whose mouth is at least approximately level with the upper end of the gap situated between the circumferential surface of the cover and the vessel walls. On slow insertion of the cover into the vessel, the static pressure of the liquid column present in the ascending section of the outflow opening then ensures that the air in the circumferential gap is also displaced.
When the cells have deposited sufficiently firmly on the base of the vessel, the excess liquid can be readily drawn off or displaced through the outflow opening without any risk of losing cells. So that it is also possible to work with cells which are in suspension, the outflow opening can be provided with a screen which holds back the cells during displacement of the liquid.
A plurality of openings can be provided which are designed for attachment of an admission and discharge line for a medium. One or more of these openings can serve as outflow opening. The device can then also be used as a so-called reactor (Meenen et al.; “Semi Continuous Reactor System . . . ”, Poster 1994 Biomaterials 21:905-908).
The cells involved can be adherent cells which stick to the base of the cell culture dish, or suspension cells which swim in the culture medium. Alternatively, tissue sections can also be cultured in the dish. In general, both eukaryotic and prokaryotic cells can be cultured in the vessel. Treatments and examinations which can be carried out using the device according to the invention can, for example, be all types of in situ hybridization and in situ PCR.
The outflow opening is expediently provided inside the cover, at a distance from the edge of the latter. However, this does not exclude the possibility of its being formed by means of a spacing provided, at least in places, between the edge of the cover and the vessel walls. A particularly advantageous design in this connection is one in which the edge of the cover comprises a collar which rises upwards from the bottom of the cover plate, which forms in its entirety or in places the said spacing for forming an outflow opening, and whose upper edge cooperates with the vessel walls to form a seal. As the cover is being lowered, quantities of gas and liquid enclosed between cover and vessel can then escape, and it is only at the end of this procedure, when the cover reaches its end position, that the seal is obtained.
If the intention is to subject a plurality of cultures to the same thermal conditions, it is expedient to connect a plurality of vessels to one another. In this case, a cover of the type indicated above can be provided for each one of the vessels. However, it is also possible to connect a plurality of covers to one another for joint actuation. It is of course possible to make the walls of a plurality of vessels integral with one another, in which case either the bases are also connected in one piece with the walls or they can be separated from these, for example in the form of a slide.
Of particular importance, however, in the context of the invention is the possibility of being able to create a plurality of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and device for accommodating a cell culture does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and device for accommodating a cell culture, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for accommodating a cell culture will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2967328

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.