Heating – With work cooling structure – Combustion feed air cools exiting work by contact
Patent
1995-04-21
1998-01-06
Tapolcai, William E.
Heating
With work cooling structure
Combustion feed air cools exiting work by contact
432 77, F27D 1502
Patent
active
057047790
DESCRIPTION:
BRIEF SUMMARY
The present invention relates to a cooler for cooling particulate material which has been heat-treated in an industrial kiln, such as a rotary kiln for manufacturing cement clinker, wherein the material is continuously supplied to and through the inlet of a cooler, which further comprises an outlet, end walls, side walls, a bottom and a ceiling.
Coolers of the above-mentioned kind are known for example from the EP-A-167,658 and EP-A-337,383 and DE-A-3734043. A common characteristic of these coolers is that they have a cooler grate surface for receiving and cooling the material which has been heat-treated in the rotary kiln, the grate surface being constructed of overlapping, alternately stationary and movable rows of grate elements, thereby causing the material to move across the grate surface. Each grate element is provided with through-going cooling gas channels for injection of cooling gas into the material from an underlying chamber. In some cases, the grate elements are provided with cooling gas from separate chambers, whereas, in other cases, the grate elements are divided into groups which are supplied with cooling gas from a common chamber.
As will appear from the above, the grate surface in the known coolers serves three purposes, viz. to support the material, to distribute the cooling gas across the material bed and to convey the material through the cooler. The fact that the grate surface thus has three functions to perform makes it necessary to accept a compromise with regard to the efficiency of each function.
The known coolers also have the disadvantage that, in practice, it is difficult to achieve an even distribution of the cooling gas across the entire grate surface, and hence a good heat exchange between material and cooling gas, since the cooling gas will not only pass through the cooling gas channels provided for this purpose but also through the gaps inevitably present between the overlapping rows of stationary and movable grate elements. Also, the wear sustained on the grate elements due to the relative movement between the elements will be relatively large. A further disadvantage, relating to the fact that the cooling surface has movable grate elements which are supplied with cooling gas individually or in groups from an underlying chamber, is that the connecting ducts for cooling gas to these chambers are exposed to a relatively large mechanical wear, which may result in leaks, and hence a pressure loss.
It is the object of the present invention to provide a method and a cooler for cooling particulate material by which the aforementioned disadvantages are obviated.
GB-A-2025588 discloses a cooler for cooling particulate material which has been heat-treated in an industrial kiln, such as a rotary kiln for manufacturing cement clinker; the cooler comprising an inlet, an outlet, end walls, side walls, a bottom and a ceiling; at least one stationary supporting surface for receiving and supporting the material which is to be cooled; means for injecting cooling gas into the material at a plurality of positions along the supporting surface; and at least one separate mechanical conveying device for conveying the material along the supporting surface.
According to the present invention, such a cooler is characterized in that the or at least one of the stationary supporting surface(s) consists of a tray having the form of a rectangular box with bottom, side walls and end walls, the tray being arranged to contain, during operation, a quantity of the particulate material which is to be cooled; and in that the gas injection means, such as tubes with preferably downwardly facing holes, are fitted within the tray.
With this construction, it is possible to split the three previously mentioned functions of the cooler, viz. to support the material, to distribute the cooling gas across the material bed and to convey the material forward across the supporting surface, into functions which are independent of one another. Since the entire supporting surface for the material is stationary, undesirable pas
REFERENCES:
patent: 2587379 (1952-02-01), Petersen
F. L. Smidth & Co. A./S
Tapolcai William E.
Wilson Gregory
LandOfFree
Method and cooler for cooling particulate material does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and cooler for cooling particulate material, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and cooler for cooling particulate material will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2323941