Method and compositions for promotion of wound treatment

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Carbohydrate doai

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S043000, C514S045000, C514S046000, C514S047000, C424S450000

Reexamination Certificate

active

06342484

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to techniques used in the promotion of wound healing. In particular, compositions of matter that promote the healing of wounds, methods of manufacture of wound healing promoting compositions, and methods of treatment that promote wound healing are encompassed within the scope of the present invention.
2. Description of the Related Art
Animals, including human beings are susceptible to a barrage of normal cuts and scrapes, as well as to much more serious wounds that may require medical attention.
Wounds may be the result of accidents or surgery. For the most part, such wounds heal at a fairly steady and slow rate, being affected by many factors including the nature and site of the wound and the physiological state of the animal.
The process of wound healing involves many complicated components. Immediately upon the injury insult, defense mechanisms inherent in normal body tissues are activated to restore continuity and tensile strength. Wound healing then occurs in three distinct phases.
First, is the phase of acute inflammatory response. Body fluids containing plasma proteins, fibrin, antibodies and various blood cells flow into the wound. Scab formation takes place and inflammation occurs within a few hours. Also, at this stage, neutrophils, monocytemacrophages come into play. During this acute phase, the wound is solely dependent on the closure material contained in the scab for strength.
Second, is the phase of fibroplasia. Here, via various enzymatic mechanisms, fibrin synthesis and accumulation takes place. This causes an increase in wound tensile strength and stimulation of fibroblast proliferation and growth. Fibroblasts secrete collagen, a fibrous protein as part of connective tissue. Collagen deposition begins from the fifth day and results in rapid gain in tensile strength of the wound.
The third phase is the maturational process. Tensile strength continues to increase from the cross-linking of collagen fibers. Deposition of fibrous connective tissue causes scar formation.
Collagen production is vital for the wound healing process. Collagen is the most prevalent protein in animals. It is an obligatory constituent of connective tissues and extra cellular matrices. Collagen networks in the tissues are responsible for establishing and maintaining the physical integrity of diverse extra cellular structures. Collagen, at molecular level, is defined as a protein comprised of lengthy domains of triple-helical confirmation. Collagenous scaffolding of extra cellular matrix includes genetically distinct types of collagen. During the normal wound repair, collagen neosynthesis and deposition of type III collagen is demonstrated in the earliest phase, i.e. 24 hr to 48 hr, period. From that point, a significant increase in type I collagen is associated with the mature wound fibroblasts and subsequent healing events. Because of its important role in the wound healing process, collagen production is a measure of the rate and quality of wound healing. As such, assays that measure collagen production are useful in experimental models to study wound healing.
The healing process is very much organ and tissue-type dependent. For example, intestinal tissue is physiologically a rapidly self emphasizing tissue and unlike other organs in that it must constantly be repaired. Intestinal repair is an ongoing process necessary to maintain normal function of the intestines. There is an almost constant need for repair in the intestines, where injury arises from aberrations in the digestive process or from ingested foods. In contrast to intestinal repair, the “wound healing” discussed in this application is caused by external factors of trauma and injury. Such sudden and external trauma injury requires intact and able host defense mechanisms.
The process of wound healing involves a complex system of local and remote (systemic) energy and substrate requirements and uses. For example, amino acids and sugars are needed as substrates for collagen and proteoglycan synthesis. Migration of fibroblasts and epithelial/endothelial cells during the wound healing process places additional systemic demands on the animal during the wound healing process. Wounded tissues have unique nutritional needs and physiological features. Lymphocyte participation in wound healing has been demonstrated (Peterson et al. (1987)). Alteration in the hosts T-cell dependent immune response has also been shown to influence wound healing. Cyclosporine and anti T-cell antibodies, both of which interfere with T-cell function, abrogate wound healing. Similarly, macrophages and their products are also involved in wound healing. Increased circulation usually results in rapid delivery of monocytes and PMN's to the wound site. This in turn results in the elimination of bacterial contamination of the wound due to nonspecific killing mechanisms and also enhances the rate of wound healing. These various cell types are synthesized by the bone marrow.
In many cases, the wound healing process proceeds very slowly, particularly in animals having limited energy stores or diets low in energy substrate sources.
Purine and pyrimidine nucleotides are involved in almost all cellular processes and play a major role in structural, metabolic, energetic and regulatory functions. They make up the monomeric units of RNA and DNA; RNA synthesis is required for protein synthesis and DNA synthesis is required for growth and cell division. Adenosine triphosphate, an adenine nucleotide is the major source of chemical energy used in metabolism, driving almost all cellular processes. Nucleotides are physiological mediators in a number of metabolic processes. Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) regulate a large number of cellular events, and adenosine is important in regulating blood blow and smooth-muscle activity. Guanosine triphosphate (GTP) is involved in signal transduction, RNA structure, and microtubule formation. Many other nucleotides are involved in regulating other cellular processes. Nucleotides function as activated intermediates in the synthesis of glycogen and glycoproteins; they are also intermediates in the synthesis of phospholipids, and serve as methyl and sulfate donors. They are structural components in a number of coenzyme that are crucial in many metabolic pathways, and they function as allosteric effectors that control the regulatory steps of major metabolic pathways.
Nucleotides consist of a nitrogenous base (either a purine or a pyrimidine), a sugar, and one or more phosphate groups. The term nucleotide in the context of the title refers to the multiple forms in which purines and pyrimidines are found and does not imply a specific form of the compounds but all forms that contain purine and pyrimidine bases.
The major purine bases are adenine, guanine, hypoxanthine and xanthine. Uric acid is also found in significant levels. The major pyrimidine bases are uracil, thymine, and cytosine. Other pyrimidines and purines are also present in smaller amounts and they have significant roles particularly in RNA structure and function.
The nucleotides are phosphoric acid esters of nucleosides in which the phosphoric acid is esterified to one of the free pentose hydroxyl groups. Nucleotides occur in free form in significant amounts in a variety of cell types. They are also formed on partial hydrolysis of nucleic acids, particularly by the action of a class of enzymes called nucleases. Nucleotides containing 2-deoxy-D-ribose are deoxyribonucleotides; those containing D-ribose are ribonucleotides. A nucleoside, which does not have a phosphate group, is formed from a base and a pentose via a glycosidic bond between the N-1 nitrogen of a pyrimidine or the N-8 of a purine and the C-1′ carbon of the pentose. The pentose is ribose or 2′-deoxyribose. The major function of the 2′-deoxyribose nucleotides is in DNA. The ribonucleotides are the monomeric units of RNA but also serve in most other cellular and metab

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and compositions for promotion of wound treatment does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and compositions for promotion of wound treatment, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and compositions for promotion of wound treatment will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2817854

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.