Method and compositions for increasing the anaerobic working...

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Having -c- – wherein x is chalcogen – bonded directly to...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C514S561000

Reexamination Certificate

active

06426361

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates to methods and compositions for increasing the anaerobic working capacity of muscle and other tissues.
Natural food supplements are typically designed to compensate for reduced levels of nutrients in the modern human and animal diet. In particular, useful supplements increase the function of tissues when consumed. It can be particularly important to supplement the diets of particular classes of animals whose the normal diet may be deficient in nutrients available only from meat and animal produce (e.g., human vegetarians and other animals consume an herbivorous diet).
For example, in the sporting and athletic community, natural food supplements which specifically improve athletic ability are increasingly important, such as supplements that promote or enhance physical prowess for leisure or employment purposes. In another example, anaerobic (e.g., lactate-producing) stress can cause the onset of fatigue and discomfort that can be experienced with aging. Anaerobic stress can also result from prolonged submaximal isometric exercise when the local circulation is partially or totally occluded by the increase in intra-muscular pressure (e.g., during rock climbing, free diving, or synchronized swimming). Excessive lactate production can result in the acidification of the intracellular environment.
Creatine (i.e., N-(aminoiminomethyl)-N-glycine, N-amidinosarcosine, N-methyl-N-guanylglycine, or methylglycocyamine) is found in large amounts in skeletal muscle and other “excitable” tissues (e.g., smooth muscle, cardiac muscle, or spermatozoa) characterized by a capacity for a high and variable energy demand. Creatine is converted into phosphorylcreatine in energy-generating biochemical pathways within cells. In mammalian skeletal muscle, the typical combined content of creatine (i.e., creatine and phosphorylcreatine) may vary from less than 25 to about 50 mmol per kilogram fresh muscle (i.e., 3.2 to 6.5 grams per kilogram fresh muscle).
Creatine formed is formed in the liver and taken up into tissues, such as muscle, by means of an active transport system. Creatine synthesis in the body may also be augmented by the ingestion of creatine present in meat (e.g., 5-10 milligrams per kilogram body weight per day in the average meat-eating human and approximately zero in a vegetarian diet).
During sustained intensive exercise, or exercise sustained under conditions of local hypoxia, the accumulation of hydronium ions formed during glycolysis and the accumulation of lactate (anaerobic metabolism) can severely reduce the intracellular pH. The reduced pH can compromise the function of the creatine-phosphorylcreatine system. The decline in intracellular pH can affect other functions within the cells, such as the function of the contractile proteins in muscle fibers.
Dipeptides of beta-alanine and histidine, and their methylated analogues, include carnosine (beta-alanyl-L-histidine), anserine (beta-alanyl-L-1-methylhistidine), or balenine (beta-alanyl-L-3-methylhistidine). The dipeptides are present in the muscles of humans and other vertebrates. Carnosine is found in appreciable amounts in muscle of, for example, humans and equines. Anserine and carnosine are found in muscle of, for example, canines, camelids and numerous avian species. Anserine is the predominant beta-alanylhistidine dipeptide in many fish. Balenine is the predominant beta-alanylhistidine dipeptide in some species of aquatic mammals and reptiles. In humans, equines, and camelids, the highest concentrations of the beta-alanylhistidine dipeptides are found in fast-contracting glycolytic muscle fibers (type IIA and IIB) which are used extensively during intense exercise. Lower concentrations are found in oxidative slow-contracting muscle fibers (type I). See, e.g., Dunnett, M. & Harris, R. C.
Equine Vet. J.,
Suppl. 18, 214-217 (1995). It has been estimated that carnosine contributes to hydronium ion buffering capacity in different muscle fiber types; up to 50% of the total in equine type II fibers.
SUMMARY OF THE INVENTION
In general, the invention features methods and compositions for increasing the anaerobic working capacity of muscle and other tissues. The method includes simultaneous accumulation of creatine and beta-alanylhistidine dipeptides, or beta-alanine and L-histidine analogues, within a tissue in the body. The methods include ingesting or infusing compositions into the body. The compositions are mixtures of compounds capable of increasing the availability and uptake of creatine and of precursors for the synthesis and accumulation of beta-alanylhistidine dipeptides, in human and animal muscle. The composition induces the synthesis and accumulation of beta-alanylhistidine dipeptides in a human or animal body when introduced into the body.
The compositions include mixtures of creatine and beta-alanine, creatine, beta-alanine and L-histidine, or creatine and active derivatives of beta-alanine or L-histidine. Each of the beta-alanine or L-histidine can be the individual amino acids, or components of dipeptides, oligopeptides, or polypeptides. The beta-alanine or L-histidine can be active derivatives. An active derivative is a compound derived from, or a precursor of, the substance that performs in the same or similar way in the body as the substance, or which is processed into the substance and placed into the body. Examples include, for example, esters and amides.
In one aspect, the invention features a method of regulating hydronium ion concentrations in a tissue. The method includes the steps of providing an amount of beta-alanine to blood or blood plasma effective to increase beta-alanylhistidine dipeptide synthesis in a tissue, and exposing the tissue to the blood or blood plasma, whereby the concentration of beta-alanylhistidine is increased in the tissue. The method can include the step of providing an amount of L-histidine to the blood or blood plasma effective to increase beta-alanylhistidine dipeptide synthesis.
In another aspect, the invention features a method of increasing the anaerobic working capacity of a tissue. The method includes the steps of providing an amount of beta-alanine to blood or blood plasma effective to increase beta-alanylhistidine dipeptide synthesis in a tissue, providing an amount of L-histidine to the blood or blood plasma effective to increase beta-alanylhistidine dipeptide synthesis in a tissue, and exposing the tissue to the blood or blood plasma. The concentration of beta-alanylhistidine is increased in the tissue.
In embodiments, the methods can include the step of increasing a concentration of creatine in the tissue. The increasing step can include providing an amount of creatine to the blood or blood plasma effective to increase the concentration of creatine in the tissue (e.g., by providing the amount of creatine to the blood or blood plasma).
The providing steps of the methods can include ingestion or infusion (e.g., injection) of a composition including the amount of beta-alanine, or the amounts of beta-alanine and L-histidine, or a combination of ingestion and infusion.
The methods can include increasing a concentration of insulin in the blood or blood plasma. The concentration of insulin can be increased, for example, by injection of insulin.
The tissue can be a skeletal muscle.
In another aspect, the invention features a composition consisting essentially of a peptide source including beta-alanine, between about 39 and about 99 percent by weight of a carbohydrate, and up to about 60 percent by weight of water. The composition includes between about 1 and about 20 percent by weight of the beta-alanine. The peptide source can include L-histidine. The composition can include between about 1 and about 20 percent by weight of L-histidine.
The carbohydrate can be a simple carbohydrate (e.g., glucose). In another aspect, the invention features a composition consisting essentially of a peptide source including beta-alanine, between about 1 and about 98 percent by weight of a creatine source, and up to about 97 percent by weight of w

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and compositions for increasing the anaerobic working... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and compositions for increasing the anaerobic working..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and compositions for increasing the anaerobic working... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2895220

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.