Chemistry: analytical and immunological testing – Metal or metal containing – Li – na – k – rb – cs – fr – be – mg – ca – sr – ba – ra
Reexamination Certificate
1995-02-17
2001-04-17
Carrillo, S (Department: 1746)
Chemistry: analytical and immunological testing
Metal or metal containing
Li, na, k, rb, cs, fr, be, mg, ca, sr, ba, ra
C436S074000, C424S677000, C424S681000, C424S682000, C424S697000
Reexamination Certificate
active
06218192
ABSTRACT:
BACKGROUND ART
Magnesium (Mg) is the second most abundant cation in the body [Altura, B. M. et al., Drugs 28 (Suppl.I):120-142, 1984]. It is cofactor for more than 325 cellular enzymes involved in cellular energy production and storage, protein synthesis, DNA and RNA synthesis, cell growth and reproduction, adenylate cyclase synthesis, maintenance of cellular electrolyte composition, and stabilization of mitochondrial membranes [Altura, B. M. et al, Drugs 28 (Suppl.I):120-142, 1984; Wacker, W. E. C.
Magnesium and Man,
Harvard Univ. Press, Cambridge, 1980]. As a consequence of these biochemical activities, Mg plays a pivotal role in control of neuronal activity, cardiac excitability, neuromuscular transmission, muscular contraction, and vasomotor tone [Altura, B. M. et al., Drugs 28 (Suppl.I):120-142, 1984; Wacker, W. E. C.
Magnesium and Man,
Harvard Univ. Press, Cambridge, 1980; Altura, B. M. et al., in:
Metal Ions in Biological Systems,
ed. by H. Sigel and A. Sigel, Vol 26: Compendium on Magnesium and Its Role in Biology, Nutrition, and Physiology, pp 359-416, Marcel Dekker, Inc. New York, 1990].
Most clinical data of Mg determinations are derived from blood levels of total Mg (Wacker, W. E. C.
Magnesium and Man,
1980; Elin, R. J. Clin. Chem. 33:1965-1970, 1987). Total serum Mg concentrations reflect protein-bound (30-40%), chelated (7-12%), and free or ionized Mg (Mg
2+
) (60-70%) fractions. The exact proportion of these fractions has been extremely difficult to determine precisely, and, moreover, there is no way to rapidly make such determinations. Precise information about Mg activity is pivotal to our understanding of Mg metabolism. The free or ionized form (Mg
2+
) is the active form of the mineral (Wacker, W. E. C.
Magnesium and Man,
1980; Elin, R. J. Clin. Chem. 33:1965-1970, 1987; Ryan, M. F. Ann. Clin. Biochem. 28:19-26, 1991). Alterations in circulating protein levels (primarily albumin), which are seen in numerous pathophysiologic states, will alter the interpretation of Mg status (very similar to calcium) (Elin, R. J. Clin. Chem. 33:1965-1970, 1987).
Although numerous methods are available clinically, to determine total Mg in serum, plasma, urine, cerebral spinal fluid and other body fluids (e.g., atomic absorption spectrophotometry, atomic emission spectrophotometry, colorimetry, fluorometry, compleximetry and chromatograph for quantifying total Mg), none of these can determine ionized or free Mg
2+
(Elin, R. J. Cin. Chem. 33:1965-1970, 1987; Wills, M. R. et al. Magnesium 5:317-327, 1986).
Until the present invention, the only method for assessing free Mg
2+
in biological samples was an ultrafiltration procedure (Wacker, W. E. C.
Magnesium and Man,
1980; Elin, R. J. Clin. Chem. 33:1965-1970, 1987; Wills, M. R. et al. Magnesium 5:317-327, 1986; Aikawa, J. K.
Magnesium: Its Biologic Significance,
CRC Press, Boca Raton, 1981). While this procedure is capable of measuring free Mg
2+
, it is fraught with a multiplicity of problems (need to control pH, need to control filter composition, time-consuming, inability to access whole blood Mg
2+
, need for centrifugation of blood). In addition, and most important, these classical methods, which primarily depend upon modifications of the procedure outlined by Watchorn, E. et al. (Biochem. J. 26:54, 1932), Toribara et. al. (J. Clin. Invest. 36:738, 1957) and Walser, M. (J. Clin. Invest. 40:723-730, 1961) result in ionized Mg
2+
values on normal subjects which are significantly different from those obtained by the present method as assessed using an ion selective electrode (ISE). Using ultracentrifugation methods combined with ultrafiltration methods to assess free Mg
2+
, the percentages of ultrafilterable Mg reported by previous workers (around 70%) (Cummings, N. A. et al. Anal. Biochem 22:108-116, 1968; Nielson, S. P. Scand. J. Clin. Lab. Invest. 23:219-225, 1960) are much higher than the values using the present method. Even more recent measurements, using ultrafiltration and a micropartition filtration system has yielded a much wider range of values for ultrafilterable Mg from normal human subjects than those of the present method (D'Costa, M. et al. Clin. Chem. 29:519, 1983; Zaloga, G. P. et al. Crit. Care Med. 15:813-816, 1987). Some of these pitfalls preclude determination of Mg
2+
in various body fluids. Moreover, determinations can not be done on less than 1.0 ml of blood.
The physiologic or pathophysiologic effects of mild to severe (or graded) decreases or increases in extracellular free Mg
2+
in whole blood, serum or plasma has not been possible to discern in human subjects or animals either rapidly (e.g., within 1-2 min) or repeatedly (multiple samples over a few minutes-hours). Since Mg is frequently used in normomagnesemic patients for its antiarrhythmic, vasomotor and neuronal actions [Altura, B. M. et al. Drugs 28(Suppl.I):120-142, 1984; Wacker, W. E. C.
Magnesium and Man,
1980; Altura, B. M. et.al. In:
Metal Ions in Biological Systems,
1990; Iseri C. T. et al. West J. Med. 138:823-828, 1983; Ebel, H. et al. J. Clin. Chem. Clin. Biochem. 21:249-265, 1983], it is vital to be able to assess the exact extracellular level of ionized Mg
2+
at any one instant. Although there is a dire need to carefully monitor extracellular Mg
2+
in hypomagnesemic patients or patients linked to Mg deficiency states such as cardiovascular insufficiency, cardiac arrhythmias, coronary artery spasm, those at risk for sudden death, renal disorders, respiratory muscle weakness, pre-eclampsia, eclampsia, migraine, hypertension, premenstrual syndrome, tetany, seizures, tremor, apathy, depression, hypokalemia and hypocalcemia, there is at present no way to do this either precisely or rapidly [Altura, B. M. et al. Drugs 28(Suppl.I):120-142, 1984; Wacker, W. E. C.
Magnesium and Man,
1980; Altura, B. M. et.al. In: Metal Ions in Biological Systems, 1990; Iseri, C. T. West J. Med. 138:823-828, 1983; Ebel, H. et al. J. Clin. Chem. Clin. Biochem. 21:249-265, 1983;Altura, B. M. et al. Magnesium 4:226-244, 1985; Zaloga, G. P. Chest 56:257-258, 1989; Sjogren, A. J. Intern. Med. 226:213-222, 1989; Zaloga, G. P. et al. In:
Problems in Critical Care,
ed. G. P. Zaloga Vol 4:425-436, J.B. Lippincott Co., Philadelphia, 1990; Resnick, L. M. et al. Proc. Nat. Acad. Sci. U.S.A. 81:6511-6515, 1984; Rudnick, M. et al. APMIS 98:1123-1127, 1990].
In 1980, it was suggested on the basis of in-vitro experiments that drops in ionized serum Mg
2+
would produce coronary vasospasm, arrhythmias and sudden death (Turlapaty and Altura, Science 208:198-200, 1980). Although clinical observations from other workers in the intervening years have suggested this might be a “real” possibility, up until the present invention, no evidence could be gathered due to the unavailability of a method for accurate and rapid assessment of blood ionized Mg
2+
(Altura, B. M. et al. In:
Metal Ions in Biological Systems,
Vol 26, 1990; Ebel, H. et al. J. Clin. Chem. Clin. Biochem. 21:249-265, 1983; Altura, B. M. et al. Magnesium 4:226-244, 1985; Sjogren, A. et al. J. Intern. Med. 226:213-222, 1989; Zaloga, G. P. et al. In: Problems In Critical Care Vol 4, 1990).
Over the past 10 years, it has been determined that reductions in ionized Mg
2+
, experimentally in animals and isolated cerebral blood vessels, can induce intense vasospasm and rupture of blood vessels in the brain (Altura, B. M. et al. In:
Metal Ions in Biological Systems
Vol 26, 1990; Altura, B. T. et al.Neuroscience Letters 20:323-327, 1980; Altura, B. T. et al. Magnesium 1:277-291, 1982; Altura, B. T. et al. Magnesium 3:195-211, 1984; Altura, B. M. et al. Am. J. Emerg. Med. 1:180-193, 1983; Huang, Q-F., et al. FASEB J. 3:A845, 1989). On the basis of such experimental findings, it has been hypothesized that head trauma would be associated with deficits in serum, plasma and whole blood ionized Mg
2+
(Altura, B. T. et al. Magnesium 1:277-291, 1982; Altura, B. T. et a
Altura Bella T.
Altura Burton M.
Mauskop Alexander
Carrillo S
Morgan & Fannegan, L.L.P.
Research Foundation of the State University of New York
LandOfFree
Method and composition for treatment of headache using... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and composition for treatment of headache using..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and composition for treatment of headache using... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2527898