Method and composition for the treatment of cancer by the...

Drug – bio-affecting and body treating compositions – Radionuclide or intended radionuclide containing; adjuvant... – In an organic compound

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S001110, C424S001570, C424S009100

Reexamination Certificate

active

06468503

ABSTRACT:

The invention relates to a method in the general field of cancer treatment, wherein a particular therapeutic effect is sought to be achieved with respect to particular cells or organisms, in humans or animals, through the use, either directly or indirectly, of targeting agents which are introduced into the living host, where the agents exhibit some kind of imperfect specificity for the cells or organisms sought to be treated and carry a soluble material which precipitates in the target cells, the accumulated precipitate being used as a platform from which to launch an aggressive attack on the cancer. In particular, the invention relates to a method of the treatment of cancer.
BACKGROUND OF THE INVENTION
1. Field of the Invention
A considerable portion of world-wide research efforts in the treatment of cancer is currently devoted to killing cancer cells by means of various cell killing agents. Despite the fact that numerous drugs, radioactive compounds, and the like have been shown to be capable of killing cancer cells, these agents fail to treat cancer successfully because of their inability to circumvent three universally present obstacles: (1) the agents do not kill all the cancer cells because they do not exhibit cytotoxic specificity for all the cancer cells, (2) the agents also kill normal cells because they do not exhibit cytotoxic specificity exclusively for cancer cells, and (3) the agents are not potent enough to kill resistant cancer cells or to overcome the ability of cancer cells to adapt and become resistant to the cell killing agents. An appreciation of these three obstacles is necessary to understand why current treatments fail and to understand the rational and methodology of the proposed invention.
Fifty years of intense research has shown that there is a wide heterogeneity in every characteristic that has been measured in cancer cells. These characteristics include cell size, buoyancy, anaerobic metabolism, enzyme composition, growth rate, gene errors, differential gene expression, chromosome number, and chromosome errors. The heterogeneity is also expressed by the presence of some cancer cells that are super-sensitive and others that are super-resistant to being killed or treated by any therapeutic agent. Within the same tumor population a fraction of cells will be sensitive to a given therapeutic agent and will be killed when that agent is administered, a fraction of cells will be resistant to the agent and will not be killed, and a fraction will adapt and become increasingly more resistant to subsequent therapeutic regimens. The resistant cells will continue to divide and spread to distant locations in the body to form metastatic tumors.
The wide heterogeneity in sensitivity to any particular therapeutic agent leads to the high probability that the systemic application of any therapeutic agent will cause partial remission of the tumor by killing the super-sensitive cancer cells, but will not be able to achieve a complete cure because it cannot kill the super-resistant cancer cells. Previous attempts at cancer therapy have generally ignored the negative therapeutic consequences of these divergent cells. There has been an intuitive and optimistic belief than an approach achieving partial remission in its early phase will give a complete cure after it has been fine-tuned. This optimism contradicts the biological principle, supported by a large amount of data, that every large population of cells or organisms is heterogeneous, and that cancer cells, which have a genetic instability, exhibit a particularly high degree of heterogeneity. Therefore, it is not surprising that the past history of cancer therapy approaches has been a monotonous sequence of short periods of hope, because killing some cancer cells leads to a remission, followed by prolonged periods of disappointment, because some cancer cells survive, seed, and continue to grow in the living host and subsequent treatments are less effective at killing the cancer cells of these metastatic tumors. It is likely that the latest field of oncogenes and other gene manipulations, as applied to cancer therapy, will also follow the same pattern. This prediction is based on the fact that there is a heterogeneity of gene errors and gene expression in the cancer cell population, and with time, more and more cells, with more and varied genetic and chromosome errors accumulate in the cancer cell population. No simple genetic correction, even if it could be applied successfully to all the cancer cells growing in the body, is likely to repair every cell.
2. Prior Art
The first serious deficiency of current cancer therapeutic approaches is that they do not take into account, and are unable to deal with, the heterogeneity of the cancer cell population. The inability of current approaches to circumvent this heterogeneity is illustrated by the failure of immuno-therapeutic approaches that rely on antigenic receptors on the surface of cancer cells to deliver therapeutic agents.
All current attempts at cancer therapy (apart from the treatment of thyroid cancer with radio-iodide) depend on killing each and every individual cancer cell by their direct individual interaction with the candidate therapeutic agents or applied environmental condition. In order to describe the need for this direct interaction, these strategies can be loosely called “sniper killing,” i.e. each cell to be killed must be targeted directly. Sniper killing agents include cytotoxic drugs, binary reagents made by attaching cancer targeting agents to cytotoxic drugs, augmented immune response, hormonal therapy, genetically engineered products (like interferon), manipulations of oncogenes, or products coded by these genes.
In order for these sniper killing strategies to be successful in treating cancer, it would be necessary for the cancer cells to have an exploitable characteristic which is present on all cancer cells, for that characteristic to be absent from all (or at least most) normal cells, and for that characteristic to not adaptively change and become non-exploitable.
It is known that cancer cells exhibit on their surface numerous receptors, including antigenic receptors, to which selected molecules such as specific antibodies, hormones, and peptides can bind. Antibodies, hormones, and peptides can be used as targeting agents for the cancer cells that express those particular antigenic receptors. Ideally, all cancer cells would express the receptor, and the number of non-cancerous cells which express the receptor would be very small. In the ideal model, binary reagents (an example of a sniper strategy) which are composed of targeting agents and cytotoxic agents would be preferentially directed to the cancer cells. However, in practice, binary reagents do not result in the delivery of the cytotoxic agent to all cancer cells in the tumor population because some cancer cells do not exhibit the particular antigenic receptor. The binary reagent will not attach to these antigenic receptor deficient cancer cells, and therefore these cells will be unaffected by the treatment and will be left to proliferate in the host. High-dose sniper killing, even when employed at dose levels which kill many normal cells, fail to kill all cancer cells because some cancer cells are antigenic receptor deficient, some cancer cells are super-resistant even before the treatment begins, and some cancer cells adapt to the therapeutic agent, survive, and become resistant to future treatments. All these sniper strategies have failed, and are doomed to fail in the future, because they cannot deal with the fact that some normal cells also express the characteristic which is the target for the sniper killing, and because they cannot deal with the universally present heterogeneity and adaptive ability of cancer cells.
The recent development of highly pure and highly immuno-specific monoclonal antibodies, hormones, and peptides which can act as specific targeting agents for particular antigenic receptors has greatly increased the ability to direct cell killing agents specifically to c

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and composition for the treatment of cancer by the... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and composition for the treatment of cancer by the..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and composition for the treatment of cancer by the... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2957817

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.