Method and composition for the treatment of benign prostate...

Drug – bio-affecting and body treating compositions – Plant material or plant extract of undetermined constitution... – Containing or obtained from palmaceae

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C424S041000, C424S074000, C424S277100, C424S474000, C424S725000, C514S002600, C514S022000, C514S023000, C514S070000, C514S071000, C514S074000

Reexamination Certificate

active

06482447

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a method and composition for the treatment and alleviation of symptoms of benign prostatic hypertrophy (BPH) and prevention of prostate cancer.
2. Discussion of Related Art
Prostate cancer is a leading cause of death among men. The American Cancer Society estimates that about 180,400 men will be diagnosed with prostate cancer during 2000. An estimated 31,900 men will die in the year 2000, making prostate cancer the second leading cause of cancer death in men in the United States. Eighty-nine percent of men with prostate cancer live at least five years, and 63% survive at least 10 years. However, if the cancer is found before it has spread outside the prostate, the five year relative survival rate is 100%. If the cancer has spread to tissue near the prostate, the survival rate is 94%. If the cancer has spread to distant parts of the body when it is found, only about 31% will live at least five years.
Studies have shown a correlation between BPH and prostate cancer. Physicians have used the prostate specific antigen (PSA) blood test to test their patients for prostate cancer. The PSA blood test measures the prostate specific antigen made by prostate cells. PSA blood test results are reported as ng/ml. Results under 4 ng/ml are usually considered normal. Results over 10 ng/ml are high and values between 4-10 ng/ml are considered borderline. Conditions such as BPH and inflammation of the prostate (prostatis) can cause high PSA values. In one study to determine the correlation between BPH and prostate cancer, Perrin et al., state that an increase in serum levels of PSA correlates with similar increased levels of PSA in prostate cancers [Perrin P, Francois O, Maquet J H, Bringeon G, Duteil P, Devonec M, (1991) Presse Med 20(28):1313-1319]. Another study states that urethra blockage caused by BPH is responsible for cysts observed in prostate cancer [Harvey, H, (1995) Pathol Res Prac 191(9):924-934]. Therefore, studies support the proposition that treatments to reduce BPH will also reduce the incidence of prostate cancer.
Some of the most common symptoms of BPH include: 1) a need to urinate often (especially disturbing at night); 2) a weak or interrupted urinary stream; 3) a feeling that you cannot empty your bladder completely; 4) a feeling of delay or hesitation when you start to urinate; 5) a feeling that you must urinate right away; and 6) continuing pain in the lower back, pelvis or upper thighs. These symptoms are caused by the way in which BPH affects the urethra and, later, the bladder. If a urinary tract infection develops, there may also be burning or pain during urination. In the early phase of prostatic enlargement, the bladder muscle has to force urine through the narrowed urethra by contracting more forcefully. Over a period of time, the forcing causes the bladder muscle to become stronger, thicker, and overly sensitive. In some cases, as prostate enlargement progresses and the urethra is squeezed more tightly, the bladder cannot overcome the problems created by the greatly narrowed urethra. If this happens, the bladder can not empty completely. This situation creates a need to urinate more frequently. In a small percentage of men, incomplete emptying of the bladder may lead to repeated urinary track infections, sudden inability to urinate, or gradual bladder and/or kidney damage. An enlarged prostate can even result in total blockage of the urethra, a very serious condition.
Symptoms of advanced prostate cancer include: 1) having trouble having or keeping an erection; 2) blood in the urine; 3) swollen lymph nodes in the groin area; and 4) pain in the pelvis, spine, hips, or ribs. Known risk factors for prostate cancers include age, family history, diet and race. After the age of 50, both incidence and mortality from a prostate cancer increase at a nearly exponential rate. For example, more than 75% of all cancers are diagnosed in men over the age of 65. Kupelian et al., have shown that the younger age of an onset of the disease is associated with family history of prostate cancer [Kupelian P A, Klein E A, Witte J S, Kupelian V A, Suh J H, (1997) J of Urol 158(6):2197-2201]. Their studies showed that 18% of patients under age of 65 at the onset of the disease have a positive family history, compared to 6% of those diagnosed with the disease over age 65. Carter et al., showed that the risk of developing the disease increases with the number of affected first-degree relatives [Carter B S, Beaty T H, Steinberg G D, Childs B, Walsh P C, (1992) Proc Natl Academy Science USA 89:3367-3371]. Family history also suggests that a high penetrant allele is responsible for this inherited form of prostate cancer [Carter et al., supra; Walsh P C, Partin A W, (1997) Cancer 80:1871-74; Cooney K A, McCarthy J D, Lange E, Huang L, Miesfeldt S, Montie J E, Oesterling J E, Sandier H M, Lange K, (1997) Natl Cancer Inst 89:955-959]. Moreover, the inherited high penetrant allele suggests an explanation for the higher incidence of prostate cancer among African Americans, compared to other race groups. Prostate cancer is about twice as common among African-American men as it is among white American men. Increased incidence of the disease also exists in North America and northwestern Europe, but the incidence is very low in Asian countries, such as China and Japan, and in Central and South America. A diet high in fat may also play a part in causing prostate cancer.
Recent studies have shown that DNA mutations in certain genes may predispose persons to the disease. One candidate gene, Hereditary Prostate Cancer Gene 1 (HPC1), is situated on the long arm of chromosome 1 [Smith J R, Freije D, Carpten J D, Gronberg H, Xu J, Isaacs S D, Brownstein M J, Bova G S, Guo H, Bujnovszky P, Nusskern D R, Damber J E, Bergh A, Emanueisson M, Kallioniemi O P, Walker-Daniels J, Bailey-Wilson J E, Beaty T H, Meyers D A, Walsh P C, Collins F S, Trent J M, Isaacs W, (1996) Science 274:1371-1374]. This gene has been shown to contribute to prostate cancer [Smith et al., supra; Gronberg H, Smith J, Emanuelsson M, Jonsson B A, Bergh A, Carpten J, Isaacs W, Xu J, Meyers D, Trent J, Damber J E, (1999) Am J of Hum Genet 65(1):134-140]. Another candidate gene is PTEN, a putative protein tyrosine phosphatase. Mutations of PTEN have been detected in various cancer cell lines, including prostate cancer cells lines [Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang S I, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner S H, Giovanella B C, Ittmann M, Tycko B, Hibshoosh H, Wigler M H, Parsons R, (1997) Science 275:1943-1947]. Research on HPC1, PTEN, and related genes, is still preliminary and genetic tests and are not known to be available. Therefore, in the absence of a genetic test, early detection, treatment and prevention are the best therapies for prostate cancer.
There is also evidence that the development of prostate cancer is linked to increased levels of hormones, or androgens. Androgens are known to be important in promoting the growth of both normal and cancerous prostate cells. The Prostate Cancer Prevention Trial is a study (currently underway) to determine whether medications to lower androgen levels can reduce prostate cancer. Previous studies have shown that high levels of androgens, more specifically testosterone and conversion of its more active metabolite dihydrotestosterone (DHT), stimulate BPH. BPH is considered to be normal after the age of 45, however, it becomes problematic when the benign tumor begins to obstruct sections of the urethra and interferes with normal urinary discharge.
The use of herbal medicines to treat cancers is an alternative method of treatment. Certain herbal medications tend to have an affinity for particular tumor types and can therefore be selected based on their specific indications. It is estimated that approximately 50 percent of the thousands of drugs commonly used and prescribed today are either derived from a plant sourc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and composition for the treatment of benign prostate... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and composition for the treatment of benign prostate..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and composition for the treatment of benign prostate... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2917817

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.