Chemistry: molecular biology and microbiology – Micro-organism – tissue cell culture or enzyme using process... – Recombinant dna technique included in method of making a...
Reexamination Certificate
2002-04-18
2003-10-28
Park, Hankyel T. (Department: 1648)
Chemistry: molecular biology and microbiology
Micro-organism, tissue cell culture or enzyme using process...
Recombinant dna technique included in method of making a...
C435S007100, C435S325000
Reexamination Certificate
active
06638739
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention involves the fields of immunology and medicine, and more particularly relates to immunization methods, and compositions used therewith, for immunizing young mammals, such as human infants and children, against at least one chronic immune mediated disorder, and, preferably, also against at least one infectious disease.
2. Related Background Art
Human Pediatric Immunization.
A number of severe childhood diseases can strike early in life. Pertussis may pose a serious threat to infants under three months of age, and, during the heyday of the polio epidemic, paralytic cases were reported in the 6-12 month age group with disturbing frequency.
Consequently, to avoid any gap in immunity, it was thought desirable to initiate immunization before infants lost passive protection-from maternal antibodies. However, the presence of maternal antibodies can modify or suppress the infant's response to immunization, especially if the vaccine preparations are of low potency. The maturity of the infant's immune system is also a consideration, and premature immunization can result in immunological paralysis.
Accordingly, it has been generally recommended to postpone immunizations in developed countries where maternal antibodies provide protection against infant infectious diseases until after the age of 2 to 6 months, when the modifying effect of the maternal antibodies had disappeared. Therefore, immunizations should induce an active immune response before the infant loses this passive protection, so that there will be continuous protection from birth without any gap in immunity to natural diseases.
More recently, it has generally been recommended to begin infant immunizations, such as DTP (diphtheria, tetanus and pertussis) and OPV (oral polio virus), at younger ages, and many countries have carried out successful immunization studies and programs beginning at 6-8 weeks of age in developed countries (Expanded Programme on Immunization (1984); (1985)). Accordingly, current recommendations for infant immunization is to provide routine DTP and OPV immunization initiated at no earlier than 6 weeks of age in all developed countries.
The literature on immunization schedules for pediatric vaccines is voluminous, but the examples which follow indicate what has been tried.
Provenzano et al., New England J. Med., 273:959-965 (1965) gave a first dose of a plain pertussis vaccine at 6-24 hours after birth. In Group I, two more such doses were given at three week intervals, and then two doses of combined diphtheria, tetanus and pertussis vaccine (DTP) at one month intervals. In Group II, the initial plain pertussis immunization was followed by three DTP injections at one month intervals.
The authors reported that the immunization response in both groups was inadequate, and attributed it to immunological paralysis “induced by the vigorous immunization schedule employed and the initiation of immunization on the first day of life.”In view of earlier studies, they recommended that immunization not be attempted under three weeks of age.
Dengrove, et al., Pediatric Res., 20:735 (1986) gave a first dose of DTP to infants before 4 days of age, and further doses at 2, 4 and 6 months of age. The immune responses to diphtheria and tetanus immunogens were acceptable, in contrast to their previous demonstration that “an early neonatal dose of DTP resulted in a lowered pertussis antibody response in the subgroup of infants who had low maternally acquired levels of antibody.”
Only 45 infants were treated, and therefore, even if this schedule could be effective to inhibit diabetes, it is unlikely that any of the infants actually were benefited (immune-mediated diabetes occurs in only one out of 200-300 individuals).
The immunization protocol used by Baraff, et al., Pediatrics, 73: 38-42 (1984) was similar, but the technology used to evaluate the immune response was more sophisticated. It was found that the IgG response to the pertussis lymphocytosis-promoting toxin (LPT) was lower and the IgM anti-FHA (filamentous hemagglutinin) response higher in the early immunization group than in controls. The authors were of the opinion that the anti-LPT response was of greater clinical significance and therefore concluded that neonatal immunization may be disadvantageous. This would have discouraged use of both Dengrove's and Baraff's protocols.
Perkins, et al., British Medical J., 0.68-71 (Jul. 12, 1958) investigated the response of infants to immunization with a killed poliomyelitis vaccine. The first dose was given to Group A at 1 week of age, Group B at six weeks of age, and Group C at ten weeks of age. A second dose was given four weeks later. Three different virus types were tested in these three groups.
Perkins et al. found that maternally transmitted antibodies interfered with the immune response of the infants to the vaccines. Maternal antibodies declined with age (the half life was about 21 days). The type 2 vaccine was the least susceptible to this interference, but according to table 4, it too, felt it (60% of Group C infants responded, as compared to 35 of those in Group A).
Based on these findings, Perkins et al. concluded “in order to avoid the inhibiting effect of the placentally transmitted antibody, immunization should at present be delayed until six to nine months after birth.”
Another study, by Spigland and Goldblum, Pediatrics 25:812-821 (1960) divided infants into groups A (1 and 2 months old), B (3 and 4 months old), and C (5 and 6 months old). Primary immunizations was either at (a) 0 and 21 days, or (b) 0, 7 and 21 days from the first immunization. The vaccine was the formalin-inactivated salk poliomyelitis vaccine. The authors concluded that “presence of maternal antibody seemed to interfere with active production of antibody,” and that “the greater the age of primary immunization, the better the response.”
In a recent pulse immunization study by: John, British Medical Journal 289:88 (1984) the first dose of an oral poliomyelitis vaccine was given at 7, 14, 21, 28, 35 or 42 days of age, and the second and third doses at intervals of four weeks. The immune response to the oral vaccine, unlike the parenteral vaccine discussed previously, did not appear to be affected by the age of the infant. The authors recommended that children be immunized with the polio vaccine at 1 and 5 weeks, and with polio-plus-DPT at 9, 13, and 17 weeks. The present inventor believes that this immunization schedule would be disadvantageous as the late administration of pertussis would promote the development of diabetes and counteract any anti-diabetic effect of the early polio vaccine dosage.
Barrett, Jr., et al., J. Am. Med. Asso., 167:1103-6 (1958) considered whether it would be advantageous to combine the polio and DPT vaccines. The tetravalent vaccine was administered to children ranging in age from 2½ months to 5 years. Only polio antigen response was measured. The study found that “older children respond much more dramatically than do the infants.”
Barrett, Jr. et al., Pediatrics, 30:720 (1962) gave a series of polio-DPT inoculations, beginning at various ages, and then at 1, 2, 3 and 4 months post-initial immunization. The first immunization was at (A) 1-2 days old, (B) 1-2 months old, (C) 3-4 months old or (D) 5-6 months old. Based on their observations, the authors recommended that the initiation of both polio and pertussis immunizations be withheld until the infants was three months of age.
A rather extensive review of the literature-on DPT and oral poliomyelitis vaccine (OPV) immunizations has been given by Halsey and Galazky Bull. World Health Org., 63:1151-69 (1985). They compare the antibody response following one dose of OPV at 1-12 weeks of life (Table 1) with that to 2-3 doses beginning at 6-8 weeks of life (Table 2), and recommend that in countries where polio-myelitis has not been controlled, trivalent OPV be given at birth and at 6, 10 and 14 weeks of age. Pertussis vaccine schedules are reviewed in Table 3. The r
Classen Immunotherapies, Inc.
Cooper Iver P.
Park Hankyel T.
LandOfFree
Method and composition for an early vaccine to protect... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and composition for an early vaccine to protect..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and composition for an early vaccine to protect... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3133524