Method and component for forming an embedded resistor in a...

Electricity: conductors and insulators – Conduits – cables or conductors – Preformed panel circuit arrangement

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C174S260000, C174S256000

Reexamination Certificate

active

06284982

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to printed circuits, and more specifically, to a method and component for manufacturing embedded resistive elements in printed circuit boards.
BACKGROUND OF THE INVENTION
In recent years, printed circuit components have become widely used in a variety of electronic devices. Of particular interest are multi-layer printed circuit board laminates which have been developed to meet the demand for miniaturization of electronic components and the need for printed circuit boards having a high density of electrical interconnections and circuitry. In the manufacture of multi-layer printed circuit boards, conductive foils, which are usually copper foils, are secured to opposite sides of a core which is conventionally a reinforced or non-reinforced dielectric. (Throughout this specification, the use of the term “core” is meant to include any one of a variety of core materials, all of which may be reinforced or non-reinforced and may include an epoxy, polyester, polyimide, a polytetrafloroethylene, and in some applications, a core material which includes previously formed printed circuits).
The process includes one or more etching steps in which the undesired or unwanted copper is removed by etching away portions of the conductive foil from the laminate surface to leave a distinct pattern of conductive lines and formed elements on the surface of the etched laminate. The etched laminate and other laminate materials may then be packaged together to form a multi-layer circuit board package. Additional processing, such as hole drilling and component attaching, will eventually complete the printed circuit board product.
The trend in recent years has been to reduce the size of electronic components and provide printed circuit boards having multi-chip modules, etc. This results in a need to increase the number of components, such as surface-mount components provided on the printed circuit board. This in turn results in a so-called “densely populated” or simply “dense” printed circuit board. A key to providing a densely populated printed circuit board is to produce close and fine circuit patterns on the outer surfaces (i.e., the exposed surfaces) of the resulting multi-layer printed circuit board. The width and spacing of conductive paths on a printed circuit board are generally dictated by the thickness of the copper foil used thereon. For example, if the copper foil has a thickness of 35 &mgr;m (which is a conventional 1-ounce foil used in the manufacture of many printed circuits), exposing the printed circuit board to an etching process for a period of time to remove such a foil thickness will also reduce the width of the side areas of the printed circuit path in approximately the same amount. In other words, because of the original thickness of the copper foil, a printed circuit board must be designed to take into account that an etching process will also eat away the sides of a circuit path (i.e., undercut a masking material). In other words, the thickness of the spacings between adjacent circuit lines is basically limited by the thickness of the copper foil used on the outer surface of the multi-layer printed circuit board.
Thus, to produce “densely populated” printed circuit boards, it is necessary to reduce the thickness of the copper, at least on the outermost surface of the multi-layer printed circuit package. (The thickness of the copper foil sheet is generally limited by the ability of a foil manufacturer to handle and transport such sheets. In this respect, as the thickness of the foil decreases below 35 &mgr;m, the ability to physically handle such foil becomes more difficult).
Many printed circuit boards also include conductive layers containing patterned components that perform as specific, discrete components. One such discrete component is a resistive element. It is conventionally known to form a resistive element using a resistor foil. A resistor foil is basically a copper foil having a thin layer of a resistive material, typically a metal or metal alloy, deposited onto one surface thereof. The resistor foil is attached to a dielectric substrate with the resistor material being adhered to the dielectric substrate. Portions of the copper foil and resistive material are etched away, using conventionally known etching and masking techniques, to produce a trace line comprised of copper and the resistive material therebelow. A section of the copper layer is removed leaving only a resistive material trace line remaining on the surface of the dielectric to connect the two separated ends of the copper portion of the trace line. Because the resistive material typically has a conductivity less than copper, it essentially acts as a resistor between the separated ends of the copper portion of the trace line. As will be appreciated, the foregoing subtractive procedure requires several masking and etching steps to remove unwanted copper and resistive material to form the actual resistive element. Such steps are both time-consuming and expensive. Further, the resistive materials used in forming the resistor foil are somewhat limited to those materials that can be etched using known etching chemicals. In this respect, the resistive material must be material that is compatible with chemicals used to etch copper.
The present invention provides an outer surface component for forming resistive elements in a multi-layer printed circuit board and a method of forming embedded resistive elements in a multi-layer printed circuit board that utilizes a process that is not limited by known resistive materials.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a component for use in forming multi-layer circuits.
Another object of the present invention is to provide a component for use as the outermost layer of a multi-layer printed circuit, wherein the component has an exceptionally thin layer of copper that facilitates fine circuit lines and a “densely populated” circuit surface.
Another object of the present invention is to provide a component as described above that has resistive elements thereon for forming embedded resistors within the multi-layered printed circuit.
Another object of the present invention is to provide a component as described above that has an exposed copper surface having improved photoresist adhesion properties that further facilitates the creation of fine circuit lines and a “densely populated” circuit surface by an etching process.
Another object of the present invention is to provide a component as described above, wherein one side of the component includes an adhesive layer for attachment to core laminates.
Another object of the present invention is to provide an outer surface laminate as described above, wherein the outer surface laminate is comprised of a polymeric film having a thin layer of copper adhered to one side of the polymeric film and at least one resistive element applied to a second side of the polymeric film.
These and other objects and advantages will become apparent from the following description of preferred embodiments of the invention, taken together with the accompanying drawings.


REFERENCES:
patent: 5072074 (1991-12-01), DeMasso et al.
patent: 5359496 (1994-10-01), Kornrumpf et al.
patent: 5362534 (1994-11-01), McKenney et al.
patent: 5450286 (1995-09-01), Jacques et al.
patent: 5578796 (1996-11-01), Bhatt et al.
patent: 5652055 (1997-07-01), King et al.
patent: 6021050 (2000-03-01), Ehman et al.
patent: 6201194 (2001-03-01), Lauffer et al.
Metech, Inc. specification sheet entitled: METECH,Silver Conductor 2700, Revised 10/99, 1 page.
Metech, Inc. specification sheet entitled: METECH,8000 Series Resistor Compositions, Revised 11/99, 1 page.
Information obtained from the web site: http://www.metechinc.com/solutions/clarostat.html, SOLUTIONS entitled: “Polymer Resistor Project Proves a ‘win-win-win’,” 4 pages, dated Jul. 20, 2000.
Information obtained from the web site: http://www.metechinc.com/solutions/manyapps.html, SOLUTIONS entitled: “Metech Resistor Pastes Serve

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and component for forming an embedded resistor in a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and component for forming an embedded resistor in a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and component for forming an embedded resistor in a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2539886

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.