Data processing: structural design – modeling – simulation – and em – Modeling by mathematical expression
Reexamination Certificate
2008-01-16
2011-12-20
Rodriguez, Paul (Department: 2123)
Data processing: structural design, modeling, simulation, and em
Modeling by mathematical expression
Reexamination Certificate
active
08082130
ABSTRACT:
A method and calculator for obtaining spin polarized quantum transport in 3-dimensional atom-scale spintronic (spin electronics) devices under finite bias voltage, based on implementing Density Function Theory (DFT) in combination with the Keldysh non-equilibrium Greens function (NEGF) formalism to calculate spin polarized quantum transport in 3-dimensional nanostructures under finite bias and external voltage.
REFERENCES:
patent: 2008/0059547 (2008-03-01), Taylor
W.J. Gallagher et al., Developement of the magnetic tunnel junction MRAM at IBM: from first junctions to a 16-Mb MRAM demonstrator chip;IBM Res. & Dev., vol. 50, 5-23A (2006).
K. Tsukagoshi et al.,Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube; Nature, 401, 572 (1999).
Z.H. Xiong et al., Giant magnetoresistance in organic spin-values: Nature, 427, 821 (2004).
J.R. Petta et al., Spin-Dependent Transport in Molecular Tunnel Junctions: Phys. Rev. Lett. 93, 136601 (2004).
S.S.P. Parkin et al., Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers: Nature Materials, 3, 862 (2004).
S. Yuasa et al.,Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions: Nature Materials, 3, 869 (2004).
H. Mehrez et. al., Carbone Nanotube based magnetic tunnel junctions: Phys. Rev. Lett. 84, 2682(2000).
S. Krompiewski et al., Giant magnetoresistance of multiwall carbon nanotues:Modeling the tube/ferromagnetic-electrode burying contact: Phys. Rev. B 69, 155423 (2004).
E.G. Emberly et al.,Molecular spintronics: spin-dependent electron transport in molecular wires: Chem. Phys. 281, 311(2002).
W.H. Butler et al., Spin-Dependent tunneling conductance of Fe/MgO/Fe sandwiches: Phys. Rev. B 63, 054416 (2001).
C. Zhang et al., Electronic structure and spin-dependent tunneling conductance under a finite bias; Phys. Rev. B 69, 134406 (2004).
J.M. MacLaren et.al., Layer KKR approach to Bloch-wave transmission and reflection:applicaiton to spin-dependent tunneling; Phys. Rev. B 59, 5470 (1999).
K.M. Schep, et al., Interface resistances of magnetic multilayers; Phys. Rev. B 56, 10805 (1997).
K. Xia, et al., Interface resistance of disordered magnetic multilayers Phys. Rev. B 63, 064407 (2001).
W. Butler, A signal boost is in order; Nature Materials, 3, 845 (2004).
M. Coey, Thin skins for magnetic sensitivity; Nature Materials, 4, 9(2005).
D. Waldron et al., Nonlinear Spin Current and Magnetoresistance of Molecular Tunnel Junctions; Phys. Rev. Lett. 96, 166804 (2006).
D. Waldron et al., First Principles Modeling of Tunnel Magnetoresistance of Fe/MgO/Fe Trilayers; Phys. Rev. Lett. 97, 226802 (2006).
J. Taylor et al., Ab initio modeling of open systmes: Charge transfer, electron conduction, and molecular switching of a C60 device Physical Review B 63, 245407 (2001).
W. Wulfhekel, et al., Single-crystal magnetotunnel junctions; Appl. Phys. Lett. 78, 509 (2001).
D. Waldron et al.,ab initio simulation of magnetic tunnel junctions; Nanotechnology, 18, 424026 (2007).
Guo Hong
Larade Brian
Waldron Derek
Bruneau Gwendoline
Goudreau Gage Dubuc
Louis Andre Pierre
Rodriguez Paul
The Royal Institution for the Advancement of Learning/McGill Uni
LandOfFree
Method and calculator for modeling non-equilibrium spin... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and calculator for modeling non-equilibrium spin..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and calculator for modeling non-equilibrium spin... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-4298782