Method and assembly for selectively charging a high voltage...

Electricity: battery or capacitor charging or discharging – One cell or battery charges another

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06664757

ABSTRACT:

BACKGROUND OF INVENTION
1. Field of the Invention
The present invention generally relates to a method and an assembly for selectively charging a high voltage vehicular battery by the use of a low voltage battery and to a vehicle which incorporates the method and the assembly and more particularly, to a method and an assembly which quickly and efficiently charges a relatively high voltage vehicular battery while reducing the likelihood of an inadvertent or unnecessary charging of the high voltage vehicular battery while concomitantly ascertaining the existence of a fault within the high voltage vehicular battery and preventing charge from being communicated to the high voltage vehicular battery should a fault be detected.
2. Background of the Invention
A hybrid vehicle typically includes a high voltage battery (e.g., a battery which supplies energy or potential energy of about three hundred volts) and a relatively low voltage battery (e.g., a battery which supplies energy or potential energy of about twelve volts). Particularly, the high voltage battery is typically used to operate a motor/generator assembly which selectively provides torque to the wheels of the vehicle, while the low voltage battery provides energy to the various devices and assemblies which operatively reside within the vehicle, such as a radio.
The high voltage battery must be recharged or receive electrical charge in the event that the high voltage battery becomes discharged or loses an amount of charge which causes the battery to fail to provide the necessary energy which is required to power the motor/generator assembly. Since there currently exists only a relatively small number of hybrid vehicles, the likelihood of quickly securing another high voltage battery or locating another hybrid vehicle whose high voltage battery may be used to jumpstart the disabled vehicle (by providing energy to the high voltage battery) is relatively small. Not only do these conventional strategies require a high voltage battery, they continue the recharging operation until the discharged or partially discharged high voltage battery is fully charged, thereby undesirably requiring a relatively large amount of time to complete the jumpstart operation. These strategies also provide electrical energy to the high voltage battery even when the energy will not charge the high voltage battery due to a fault which may exist within the high voltage battery. Moreover, these strategies also attempt to provide electrical energy to the high voltage battery even when such energy may not be needed by the high voltage battery (e.g., such as when the high voltage battery is fully charged or has an amount of charge greatly exceeding the threshold amount of charge needed to operate the motor/generator assembly). The present invention overcomes these disadvantages.
SUMMARY OF INVENTION
It is a first non-limiting advantage of the present invention to provide a method and an assembly for selectively charging a vehicular high voltage battery in a manner which overcomes some or all of the previously delineated disadvantages of prior strategies and methods.
It is a second non-limiting advantage of the present invention to provide a method and an assembly for selectively and quickly recharging a vehicular high voltage battery to an adequate level appropriate to allow the vehicle to start at a relatively slow speed.
It is a third non-limiting advantage of the present invention to provide a method and an assembly which reduces the likelihood that charge will be attempted to be communicated to a fully charged high voltage battery.
It is a fourth non-limiting advantage of the present invention to provide a method and an assembly for selectively and quickly recharging a vehicular battery and for quickly and efficiently detecting the presence of a fault within the battery, and for preventing charge to be communicated to the battery when such a fault is detected.
According to a fifth non-limiting advantage of the present invention, an assembly for selectively charging a first battery is disclosed which operatively provides a first voltage signal having a first amplitude by the use of a second battery which operatively provides a second voltage signal having a second amplitude. Particularly, the assembly includes a charger which is coupled to the first battery, which selectively receives the second voltage signal, which converts the second voltage signal to a third voltage signal having an amplitude which is equal to the first amplitude, and which communicates the third voltage signal to the first battery, and a controller which is coupled to the charger, which detects the presence of a fault within the first battery and which allows the third voltage signal to be communicated to the first battery in the absence of a fault within the first battery and for a time necessary to partially charge the first battery.
According to a sixth non-limiting advantage of the present invention, a vehicle is provided having a first battery providing a first voltage signal having a first amplitude and a second battery providing a second voltage signal having a second amplitude. Moreover, the vehicle includes a charger which is coupled to the first and second batteries, which receives the second voltage signal, and which converts the second voltage signal to a third signal having the first amplitude, and a controller assembly which is coupled to the charger and which selectively causes the third voltage signal to be communicated from the charger to the first battery for a certain period of time sufficient to partially charge the first battery.
According to a seventh non-limiting advantage of the present invention, a method is disclosed of charging a battery which is operatively disposed within a vehicle of the type having a selectively positionable ignition switch. Particularly, the method includes the steps of determining whether the battery requires a predetermined amount of electrical charge; and causing only a portion of the predetermined amount of required charge to be communicated to the battery and when the ignition switch resides in an off position.


REFERENCES:
patent: 5481175 (1996-01-01), Qualich et al.
patent: 5592067 (1997-01-01), Peter et al.
patent: 5811958 (1998-09-01), Yamamoto

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and assembly for selectively charging a high voltage... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and assembly for selectively charging a high voltage..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and assembly for selectively charging a high voltage... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3159053

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.