Internal-combustion engines – Charge forming device – Having fuel vapor recovery and storage system
Reexamination Certificate
2001-04-20
2002-09-10
Wolfe, Willis R. (Department: 3747)
Internal-combustion engines
Charge forming device
Having fuel vapor recovery and storage system
C123S1980DA, C073S114220
Reexamination Certificate
active
06446615
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to a method and an arrangement for checking the operability and especially the tightness of a tank-venting system of a motor vehicle. The tank-venting system includes a tank, an adsorption filter and a tank-venting valve. The adsorption filter is connected to the tank via a connecting line and has a venting line. The tank-venting valve is connected to the adsorption filter via a valve line.
BACKGROUND OF THE INVENTION
In the above method and arrangement, a pump module is connected to the adsorption filter on the scavenging air end thereof. The pump module is utilized to introduce at time intervals an overpressure into the tank-venting system relative to the atmospheric pressure and the pressure trace of at least one operating characteristic variable of the tank-venting system, especially at least one operating characteristic variable of the pump module is detected when introducing the overpressure and a conclusion is drawn from this trace as to the presence of leakage in the tank-venting system and a corresponding fault signal is outputted. The adsorption filter is scavenged for regeneration at time intervals with the scavenging air inducted from the ambient of the vehicle.
In motor vehicles, tank-venting systems are increasingly utilized wherein the vaporized or excess fuel vapor is not conducted into the ambient but is directed via a venting line into an active charcoal filter (AKF). The fuel vapor or fuel gas is stored there in this filter and, during operation of the vehicle, the vapor or gas is supplied to an intake manifold of the internal combustion engine and therefore to the combustion via a clock-driven electromagnetic tank-venting valve. In this way, an emission of environmentally toxic fuel vapors (especially hydrocarbon vapors) from the tank into the ambient is substantially avoided and, at the same time, the vapors, which are supplied to the engine, are themselves used as fuel.
In these vehicles, the pump module (tank leakage pump module) is connected to the active charcoal filter at the fresh air end thereof. The storage capacity of the active charcoal filter becomes continuously less with increasing quantities of stored hydrocarbons and it is therefore necessary to regenerate the active charcoal filter at regular intervals, that is, to liberate the stored hydrocarbons from the active charcoal filter. This takes place by scavenging the active charcoal filter with fresh air. The active charcoal filter is connected via a regenerating valve to an intake manifold of the engine which serves to induct combustion air. By opening the regenerating valve, a pressure drop occurs between the active charcoal filter and the intake manifold by means of which hydrocarbons, which are stored in the active charcoal filter, are conducted into the intake manifold in order to be combusted in the engine and thereby disposed of.
In the above-mentioned arrangement of the pump module, fresh air is perforce passed through the pump module during the regenerating phases during which it is generally switched off. At the present time, the tank leakage pump modules for different types of vehicles are mounted at different installation locations and with induction air filters mounted likewise at different installation locations. Depending upon the installation location of the intake filter, heated air can be inducted and passed through the tank leakage pump module for an arrangement of the induction filter in the engine compartment. Alternatively, and in the case of an arrangement of the intake filter, for example, in the wheel housing, cold air can reach the tank leakage pump module during a scavenging phase of the active charcoal filter. The problem of icing of the tank leakage pump module can occur when there is scavenging with cold and damp air.
Even when scavenging with warm air (especially for a disturbance present in the active charcoal filter scavenging function), the problem is present that an iced or damp pump module is still iced or damp at the time point of carrying out a tank leakage diagnosis utilizing the tank leakage pump module whereby a trouble-free operation of the pump module is no longer ensured.
In both of the above-mentioned cases, dampness or icing in the pump module can lead to the situation that defective measurement results in a tank leakage diagnosis and therefore a leak in the tank system is erroneously detected.
In this context, reference is made to more rigorous statutory requirements for the operation of internal combustion engines which are being sought in several countries, such as in the United States, by the governments thereof. In accordance with these requirements, it is, for example, necessary that motor vehicles, which utilize volatile fuels such as gasoline, have a tank-venting system as mentioned initially herein which can also find an existing leak in the tank or in the entire fuel tank system.
SUMMARY OF THE INVENTION
It is an object of the invention to provide a method and an arrangement of the kind described above wherein an erroneous measurement, which is caused by icing and/or moisture in a tank leakage pump, is avoided as effectively as possible.
The method of the invention is for checking the operability of a tank-venting system of a motor vehicle including checking the tightness thereof. The tank-venting system includes a tank, an adsorption filter, a connecting line connecting the adsorption filter to the tank, the adsorption filter having a venting line, a tank-venting valve, a valve line connecting the tank-venting valve to the adsorption filter and a pump module connected to the adsorption filter. The method includes the steps of: operating the pump module from time to time to introduce an overpressure relative to atmospheric pressure into the tank-venting system; detecting the course of at least one operating characteristic variable of the tank-venting system indicative of the pressure therein when introducing the overpressure; from this course, drawing a conclusion as to the presence of a non-tightness of the tank-venting system; outputting a corresponding fault signal when a condition of the non-tightness is present in the tank-venting system; inducting scavenging air from the ambient of the vehicle and scavenging the adsorption filter with the scavenging air from time to time for regenerating the adsorption filter; detecting the temperature of the scavenging air and the quantity of the scavenging air supplied to the absorption filter during scavenging of the adsorption filter; and, drawing a conclusion from at least one of the temperature and the quantity as to whether the pump module is in one of the following states: frozen, thawed or demoisturized.
A special characteristic of the invention is that icing or moisture can be determined in the tank leakage pump module while considering the scavenging air quantity and the scavenging air temperature during the regeneration of the adsorption filter and, in this way, erroneous measurements can be effectively avoided in the tank leakage diagnosis. The scavenging air quantity is used to scavenge the adsorption filter and can be integrated via the scavenging rate and the intake air mass. By considering this scavenging air quantity, a clear determination can be made as to whether the tank leakage pump module, at the time point of consideration, is “iced”, already again “deiced” or already again “demoisturized”.
A first variation of the invention relates to the case wherein the tank leakage pump module or the intake air filter is mounted at a location of the vehicle protected from the outside temperature such as in the engine compartment of a motor vehicle. For this reason, and already after a short travel, warm air inducted via the filter is used for scavenging the adsorption filter with which a tank leakage pump module, which has become iced or moist in the interior, is deiced or demoisturized. If the scavenging with warm air did not take place long enough, it is assumed that the pump module is still iced or moist notwithstanding the relatively high
Klein Ralf
Stegmann Volker
Wiltsch Peter
Huynh Hai
Ottesen Walter
Robert & Bosch GmbH
Wolfe Willis R.
LandOfFree
Method and arrangement for detecting icing in pumps utilized... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and arrangement for detecting icing in pumps utilized..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and arrangement for detecting icing in pumps utilized... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2893667