Electricity: motive power systems – Positional servo systems – Pulse-width modulated power input to motor
Reexamination Certificate
2002-06-17
2003-12-16
Vu, Bao Q. (Department: 2838)
Electricity: motive power systems
Positional servo systems
Pulse-width modulated power input to motor
C318S606000, C180S065510, C180S065230
Reexamination Certificate
active
06664751
ABSTRACT:
BACKGROUND OF INVENTION
1. Industrial Applicability
The present invention finds applicability in the transportation industries, and more specifically private and commercial vehicles. Of particular importance is the invention's incorporation into hybrid electric vehicles.
2. Background Art
Generally, a hybrid electric vehicle combines electric propulsion with traditional internal combustion engine propulsion to achieve enhanced fuel economy and/or lower exhaust emissions. Electric propulsion has typically been generated through the use of batteries and electric motors. Such an electric propulsion system provides the desirable characteristics of high torque at low speeds, high efficiency, and the opportunity to regeneratively capture otherwise lost braking energy. Propulsion from an internal combustion engine provides high energy density, and enjoys an existing infrastructure and lower costs due to economies of scale. By combining the two propulsive systems with a proper control strategy, the result is a reduction in the use of each device in its less efficient range. Furthermore, and as shown in
FIG. 1
regarding a parallel hybrid configuration, the combination of a downsized engine with an electric propulsion system into a minimal hybrid electric vehicle results in a better utilization of the engine, which improves fuel consumption. Furthermore, the electric motor and battery can compensate for reduction in the engine size.
In typical configurations, the combination of the two types of propulsion systems (internal combustion and electric) is usually characterized as either series or parallel hybrid systems. In a pure series hybrid propulsion system, only the electric motor(s) are in direct connection with the drive train and the engine is used to generate electricity which is fed to the electric motor(s). The advantage of this type of system is that the engine can be controlled independently of driving conditions and can therefore be consistently run in its optimum efficiency and low emission ranges. A key disadvantage to the series arrangement is the loss in energy experienced because of the inefficiencies associated with full conversion of the engine output to electricity. In a pure parallel hybrid propulsion system, both the engine and the electric motor(s) are directly connected to the drive train and either one may independently drive the vehicle. Because there is a direct mechanical connection between the engine and the drive train in a parallel hybrid propulsion system, less energy is lost through conversion to electricity compared to a series hybrid propulsion system. The operating point for the engine, however, can not always be chosen with full freedom.
The two hybrid propulsion systems can be combined into either a switching hybrid propulsion system or a power-split hybrid propulsion system. A switching hybrid propulsion system typically includes an engine, a generator, a motor and a clutch. The engine is typically connected to the generator. The generator is connected through a clutch to the drive train. The motor is connected to the drive train between the clutch and the drive train. The clutch can be operated to allow series or parallel hybrid propulsion.
A power-split hybrid system, as is exemplarily employed with respect to the present invention, includes an engine, a generator and a motor. The engine output is “split” by a planetary gear set into a series path from the engine to the generator and a parallel path from the engine directly to the power train. In a power-split hybrid system, the engine speed can be controlled by varying the power split to the generator by way of the series path, while maintaining the mechanical connection between the engine and drive train through the parallel path. The motor augments the engine on the parallel path in a similar manner as a traction motor in a pure parallel hybrid propulsion system, and provides an opportunity to use energy directly through the series path, thereby reducing the losses associated with converting the electrical energy into, and out of chemical energy at the battery.
In a typical power-split hybrid system, the generator is usually connected to the sun gear of the planetary gear set. The engine is connected to the planetary carrier and the output gears (usually including an output shaft and gears for interconnection with the motor and the wheel-powering, final drive train) are connected to the ring gear. In such a configuration, the power-split hybrid system can generally be operated in four different modes; one electric mode and three hybrid modes.
In the electric mode, the power-split hybrid system propels the vehicle utilizing only stored electrical energy and the engine is turned off. The tractive torque is supplied from the motor, the generator, or a combination of both. This is the preferred mode when the desired power is low enough that it can be produced more efficiently by the electrical system than by the engine and when the battery is sufficiently charged. This is also a preferred mode for reverse driving because the engine cannot provide reverse torque to the power train in this configuration.
In the parallel hybrid mode, the engine is operating and the generator is locked. By doing this, a fixed relationship between the speed of the engine and the vehicle speed is established. The motor operates as either a motor to provide tractive torque to supplement the engine's power, or can be operated to produce electricity as a generator. This is a preferred mode whenever the required power demand requires engine operation and the required driving power is approximately equal to an optimized operating condition of the engine. This mode is especially suitable for cruising speeds exclusively maintainable by the small internal combustion engine fitted to the hybrid electric vehicle.
In a positive split hybrid mode, the engine is on and its power is split between a direct mechanical path to the drive train and an electrical path through the generator. The engine speed in this mode is typically higher than the engine speed in the parallel mode, thus deriving higher engine power. The electrical energy produced by the generator can flow to the battery for storage or to the motor for immediate utilization. In the positive split mode, the motor can be operated as either a motor to provide tractive torque to supplement the engine's power or to produce electricity supplementally with the generator. This is the preferred mode whenever high engine power is required for tractive powering of the vehicle, such as when high magnitude acceleration is called for, as in passing or uphill ascents. This is also a preferred mode when the battery is charging.
In a negative split hybrid mode, the engine is in operation and the generator is being used as a motor against the engine to reduce its speed. Consequently, engine speed, and therefore engine power, are lower than in parallel mode. If needed, the motor can also be operated to provide tractive torque to the drive train or to generate electricity therefrom. This mode is typically never preferred due to increased losses at the generator and planetary gear system, but will be utilized when engine power is required to be decreased below that which would otherwise be produced in parallel mode. This situation will typically be brought about because the battery is in a well charged condition and/or there is low tractive power demand. In this regard, whether operating as a generator or motor, the torque output of the generator is always of the same sense (+/−); that is, having a torque that is always directionally opposed to that of the engine. The sign of the speed of the generator, however, alternates between negative and positive values depending upon the direction of rotation of its rotary shaft, which corresponds with generator vs. motor modes. Because power is dependent upon the sense of the speed (torque remains of the same sense), the power will be considered to be positive when the generator is acting as a generator and negative when the
Gabriel David Crist
Gokhale Renuka Vikram
Ford Motor Company
Vu Bao Q.
LandOfFree
Method and arrangement for a controlling strategy for... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and arrangement for a controlling strategy for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and arrangement for a controlling strategy for... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3158130