Electrical computers and digital processing systems: multicomput – Remote data accessing – Accessing a remote server
Reexamination Certificate
1998-11-03
2002-02-19
Winder, Patrice (Department: 2155)
Electrical computers and digital processing systems: multicomput
Remote data accessing
Accessing a remote server
C382S128000, C709S218000
Reexamination Certificate
active
06349330
ABSTRACT:
This application is submitted with a computer program listing appendix on a compact disc containing copyrighted material. The appendix consists of one compact disc with 5 files entitled:
getimage.txt (text file) 13 KB Created: Dec. 21, 2000
agecases.txt (text file) 31 KB Created: Dec. 21, 2000
compress.txt (text file) 36 KB Created: Dec. 21, 2000
savegs.txt (text file) 4 KB Created: Dec. 21, 2000
showgs.txt (text file) 8 KB Created: Dec. 21, 2000
The contents of the compact disc are incorporated herein by reference. A duplicate copy of the compact disc was filed. The copyright owner has no objection to the facsimile production by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, or otherwise reserves all copyright rights whatsoever in the appendix.
FIELD OF THE INVENTION
The present invention relates to the recording, storing, viewing and archiving of digital images, and more particularly, to converting digital images into dynamic video and HTTP formats to develop a server accessible case record including a dynamic video series of images and a lossless still image, and archiving in a timely manner the complete image data for a case.
BACKGROUND
Graphic images can generally be stored on magnetic media and magneto-optical disks, or CD-Roms. Graphic images are stored in two general formats, JPEG and GIF.
JPEG is a graphics format with suffix “.jpg” while the other popular graphics format is graphical interchange format (GIF) graphics with suffix “.gif.” GIF is the most widely used graphics type. However, an advantage of JPEG is that it offers a higher degree of compression, allowing graphics files to occupy less disk storage space, i.e., fewer databits, than GIF, and consequently so that a picture or graphics file stored using JPEG can be transmitted faster.
Compression programs (e.g., Winzip for Windows and Stuffit Expander for Mac) utilize repetitiveness in data files to substitute simple symbolic representations for larger data strings each time the data strings appear. Decompression programs later restore the data back to full form by re-substituting the data strings for their simple symbolic representations.
Many images can be JPEG compressed to as much as 10:1 without undue distortion of the image. The amount of tolerable compression that an image can withstand generally depends on the complexity of the image. If the image has large areas of nonvariant or periodic chromatic integrity, then the image may be compressed a great deal. If the image is a random sea of static image, then no compression is possible, if the goal is to achieve a resulting “lossless” image. A lossless image is one whose resolution is not diminished by compression.
As a simple example, if an image has at least 4 contiguous pixels per localized color unit, then a 4:1 compression will not alter the resolution of the image at all, rendering it lossless, and yet the 4:1 compression will reduce transfer times to almost ¼ of their uncompressed times. Higher compression will render the resulting image at least fractionally “lossy” but will nevertheless often be desirable to minimize memory storage space usage and data transfer times. An appropriate balance must be carefully determined by a user, with shorter transfer times and lower usage of storage space advantages on one side, and clearer resolution on the other.
Plug-ins, usually having the .DLL (dynamic link library) suffix, are often used to facilitate browser access capabilities. Plug-ins enhance a browser's ability to access data and media of different types and come in many varieties. Common browsers utilize many plug-ins seamlessly to increase web data and media type access. Plug-ins often allow web pages to assimilate video and audio, thus allowing web pages to have multimedia prowess. Common plug-ins for web browsers include Netscape's LiveVideo and LiveAudio, Macromedia's director, Adobe's Acrobat and Apple's QuickTime.
A CGI (Common Gateway Interface) script is a program that is run on a web server, usually linking the server with another program running on the system such as a database. Typically, a browser requests a URL, which is the script, from the server which executes the script. The script then operates and passes output from other programs back to the server which passes the information back to the browser. Note that CGI scripts can be other than scripts. They can be, e.g., batch files or other executable programs
A server typically has a finite amount of “on-line” image storage space. It is thus often necessary to use “off-line” or “near-line” storage for image archiving. Problematically, images archived to off-line or near-line storage are not as readily accessible in real time as those stored on an image server.
An important practical area for minimizing the storage requirements for lossless images is in angiography, or cardiac imaging. From an angiogram, a doctor can tell whether abnormal blood flow is occurring within the patient's heart. Angiograms are especially useful when electrocardiograms, computed tomography (CT), nuclear magnetic resonance (NMR) and other non-invasive techniques fail to reveal critical information required for proper diagnosis.
Cardiac images are often stored using Dicomed format, and specifically, ACC/ACR-NEMA DICOM 3.0 exchange media CD-Rom format. These images can be stored as lossless JPEG images with approximately 2:1 compression ratio and a resolution of 512×512.
A Thumbnail image is a single frame inline GIF or JPEG, which is taken from the middle of a sequence of images. The Dicom format includes single image 128×128 or 256×256 thumbnails taken from the middle of a sequence of 521×512 resolution, 2:1 compression JPEG images.
A number of products have implemented a mixture of compression techniques and display mechanisms to reduce the bandwidth and storage requirements for video images. Eigen Dualpath (R) has matched the speed of read/write optical drives and JPEG compression as a means to give real time, 1024×512 pixel dynamic review of cases off of slow media. Philips has produced a modification of the Dicom 3.0 XA standard, adding a lossy, compressed JPEG that would enable real time 521×512 pixel images from a CD-Rom format.
A problem with existing technology is that Dicomed formatted images are only conventionally convertible into single frame thumbnail images of 128×128 resolution. The single frame image can only yield static information concerning blood flow and cardiovascular blockage. Dynamic imaging, on the other hand, would provide insight into interrelationships within the heart including those of heart rate and blood flow velocity, flow paths and associated flow inhibitors, and cardio-irregularities and manifestations thereof. Dynamic Dicom-formatted images are not currently accessible via conventional internet browsers, with or without their plug-in companions.
Another problem with existing technology is its inability to retrieve single lossless images from Dicom 3.0 records and present them to a standard “off the shelf” internet browser. Conventional technology does not provide an HTTP or internet protocol to interface with Dicom 3.0 XA image records. This means that a remote cardiologist cannot perform analysis of cardiac images and angiograms by selecting a Dicomed image and converting it in real time for viewing via an internet browser. The use of a browser interface is also a low-training method of interacting with users. As hospitals, e.g., implement internet protocols to access and share data, presenting cardiac images on an internet browser is desirable.
A still further problem with existing technology is that resolution of cardiac images is not adequate to meet the bio-medical requirements of today. Single frame conversion of Dicomed formatted images at 128×128 resolution, as is the conventional limitation, must give way to better resolved imaging capabilities.
It is thus desired to have a readily accessible case recor
Bernadett Michael J.
Castorino Michael
Dilorenzo Sharon
Fee Nancy
Foster George
Eigden Video
Gray Cary Ware & Freidenrich LLP
Winder Patrice
LandOfFree
Method and appparatus for generating a compact... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and appparatus for generating a compact..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and appparatus for generating a compact... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2957360